Review of the December 2007 Flood Event at Doty

Technical Workshop Lacey Community Center October 30, 2013

December 2007 Flood Event

Doty gage – failed at 11 AM on December 3, 2007

Doty Gage Indirect Discharge Measurement

Slope Area Method –

$$V = \frac{1.49}{n} R^{2/3} \sqrt{S}$$

$$Q = VA$$

Q = Flow (cfs) V = Velocity (fps) n = Manning's N (roughness) R = Hydraulic radius = A/P_w S = Slope (ft/ft) A = Area (ft²) P_w = Wetted perimeter (ft)

Key Assumption - Manning's N

Selected based on judgment of the hydraulic engineer considering:

- 1. Bed material
- 2. Bank vegetation
- 3. Form roughness (structure and shape)
- 4. Turbulence
- 5. Depth of flow
- 6. Sediment?
- 7. Wood in transit?

Channel at site of USGS indirect measurement

Other key components - Area

Area estimated based on cross section surveys and high water marks (HWMs)

Some potential uncertainties:

- 1. Wave action at edge of flow (± 0.5 feet)
- 2. Effect of wood on flow area and depth
- 3. Velocity drawdown in high velocity zone (versus edge)

USGS Survey after Dec 2007 Flood

USGS Cross Sections

USGS Rating Curves and Discharge Measurements

USGS Rating Curves and Discharge Measurements

WSE HEC-RAS Model v. Rating 18

WSE HEC-RAS Model v. Rating 17.1

HEC-RAS Model calibration - Elk Creek Road to Pe Ell (without log jam)

HEC-RAS Model calibration - Elk Creek Road to Pe Ell (with log jam, before failure)

USGS Peak Flow Estimate v. WSE Estimate

USGS – 63,100 cfs ±15% WSE – 52,600 cfs Difference – WSE estimate 16% less than USGS

Reasons for difference:

- 1. Manning's n value (USGS 0.04, WSE 0.045)
- 2. Cross section locations and properties
- 3. HEC-RAS unsteady model versus slope area

Other Supporting Info – precipitation and hydrology

Legend

10

20

Precipitation Recurrence

Based on maximum 24-hour period during December 3, 2007 flood event **NEXRAD** based data ground controlled using 496 precipitation stations

December 2007 Precipitation Statistics

Basin	Gage No.	WSDOT Ave. 100yr24hr precip	Dec 2007 Event	Ratio (Dec2007:100yr24hr)
Doty - Chehalis	12020000	7.04	16.00	2.27
Elk Creek	12020500	6.89	13.35	1.94
SF Chehalis at Boistfort	12021000	5.99	12.17	2.03
Newaukum	12025000	5.15	5.61	1.09
Skookumchuck	12026400	4.82	5.90	1.23
Grand Mound - Chehalis	12027500	5.39	9.37	1.74

Simple HEC-1 Hydrologic Model

- Uses SPAS Hourly Precipitation data for 1 4 Dec 2007
- 3 sub-basins (Thrash Creek, potential dam site, Doty gage)
- Ignored snowmelt contributions
- Several simple loss methodologies and basin transforms tried
- Straddle-Stagger river routing
- "Calibrated" to early part of event
- Required large initial losses
- Used for sensitivity tests (no losses, more rainfall, etc.)

Simple HEC-1 Hydrologic Model

Doty gage – daily flow volume

Doty gage – daily flow volume

Basin average rainfall – 1-4 December 2007 = 16.0" Basin average runoff – 2-5 December 2007 = 32.4"

Daily discharge for December 3rd is not possible given hourly discharges through 11 AM and estimated peak discharge

Currently discussing this with USGS

Potential Implications on Hydrology

Percent	Return Period (years)	USGS Doty Gage Computed Frequency Curve - Flow (cfs)						
Chance Exceedence		All Observed Data		Dec 2007 Event Set to 52,660 cfs		Dec 2007 Event Removed		
		1939 - 2012	With Historic Period	1939 - 2012	With Historic Period	1939 - 2012		
0.2	500	59,000	54,000	54,000	50,000	39,000		
0.5	200	47,000	43,000	43,000	41,000	34,000		
1	100	39,000	37,000	37,000	35,000	30,000		
2	50	32,000	30,000	31,000	29,000	26,000		
4	25	26,000	25,000	25,000	24,000	22,000		
10	10	20,000	19,000	19,000	19,000	18,000		
20	5	15,000	15,000	15,000	15,000	14,000		
50	2	9,900	9,900	10,000	9,900	10,000		
80	1.25	6,900	7,000	7,000	7,000	7,100		
90	1.11	5,900	6,000	5,900	6,000	6,000		
95	1.05	5,200	5,300	5,200	5,300	5,300		
99	1.01	4,300	4,400	4,300	4,300	4,200		
Note:	e: ¹ All frequency analyses based on the methods of Bulletin 17B of the Hydrology Subcommittee, Interagency Advisory							
	Committee on Water Data, Revised September 1981							

² Frequency analyses conducted using US Army Corps of Engineers HEC-SSP Software