
Chehalis Basin Strategy: Reducing Flood Damage and Enhancing Aquatic Species

Aquatic Species Enhancement Plan

Technical Committee Meeting Olympia, Washington May 7-8, 2014

Aquatic Species Enhancement Plan

• Background information and biological context

- WDFW field data collection
 - Riverscape survey
 - Juvenile and adult fish movement (PIT and radio telemetry) Habitat limiting factors
- Habitat enhancement actions
- Climate changes
- Summary and next steps
- Discussion

Preliminary Results - Effects of Flood Retention Alternatives on Aquatic Species

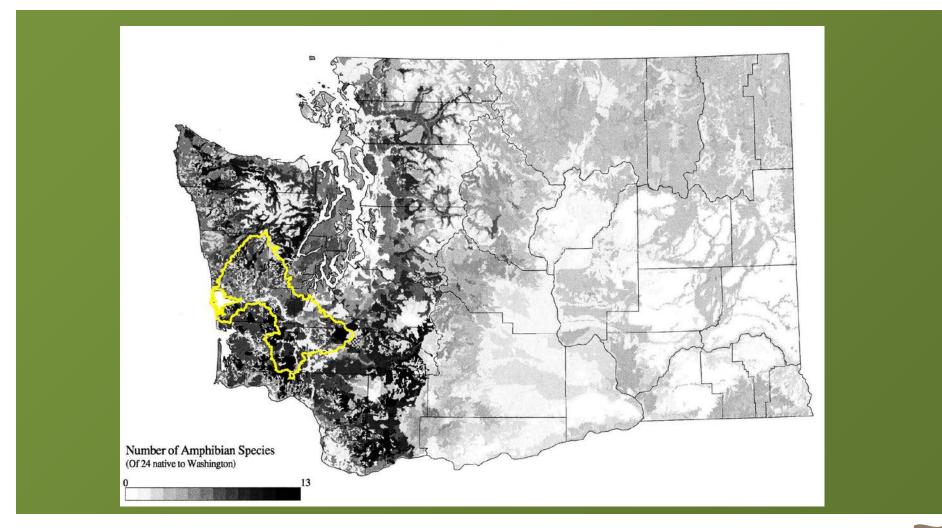
- Background information and biological contextSalmon
 - Ecosystem Diagnosis & Treatment (EDT) model results
 - Shiraz model results
- Other fish
- Non-fish

Next steps

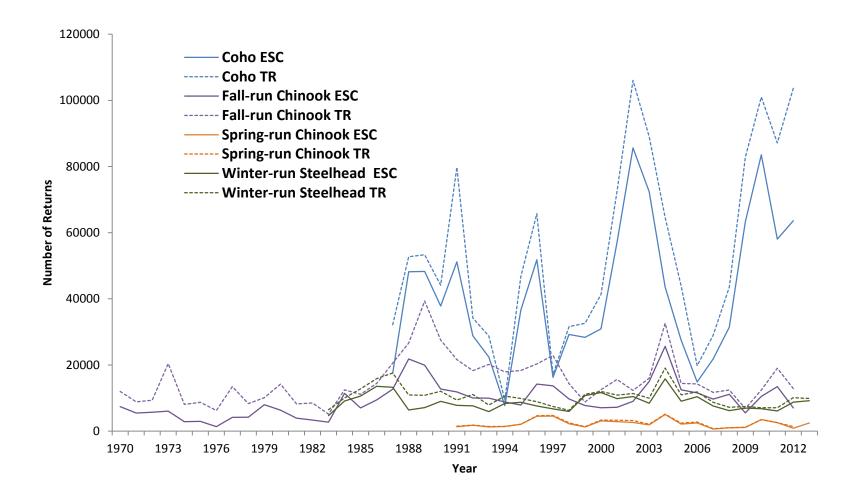
Background Information – Selected Species

24 key species modeled
Salmon (EDT and Shiraz) – 4
Other fish – 11

- Non-fish 7
- Exotics 2 (three additional species considered stressors)


Background Information – Species Status

• ESA-listed species Eulachon • Bull trout State species of concern Olympic mudminnow Petitioned for ESA listing Oregon spotted frog (August 2014)

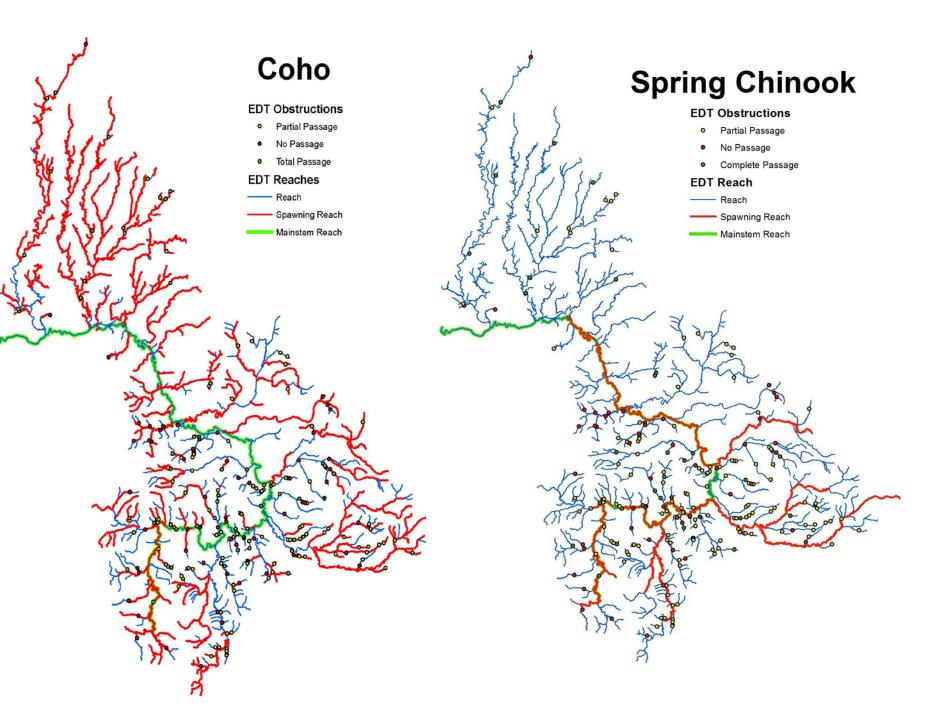

Background Information – Other Fish and Non-fish Species

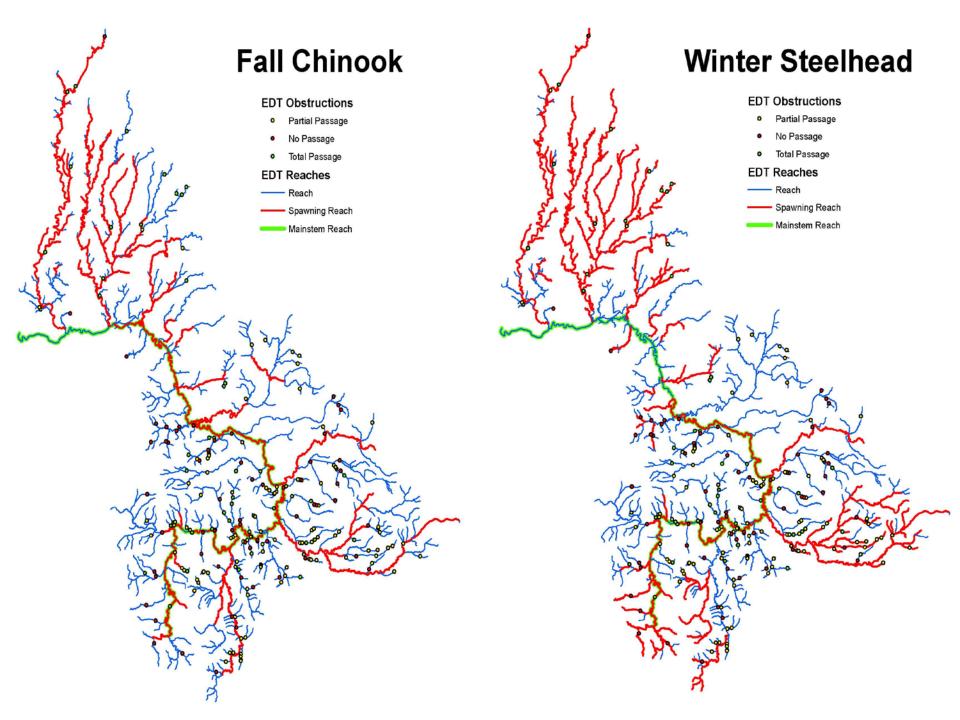
- Historical and current population information very limited in Basin.
- Olympic mudminnow unique; center of distribution
- Chum salmon the exception; geo mean of total run size since 2003 = 25,116 fish (no clear trend)
- Highest species richness of amphibians in Washington State; also highest at risk in the state
- Potential Oregon spotted frog listing
- Most extensive floodplain off-channel habitats in Washington State; occupied by seven species of stillwater-breeding amphibians

Native Amphibian Species Richness

Background – Salmon Trends (WDFW Data)

Salmon – Geo Means of WDFW Spawner Index Data (2003–2012)


Species	Total Run	Escapement	Post-harvest Productivity (R/S)	
Spring Chinook Salmon	1,933	1,766	0.9	
Fall Chinook Salmon	14,165	11,264	1.0	
Coho Salmon	58,567	42,039	1.1	
Winter-run Steelhead	9,513	8,346	0.8	


Salmon – Habitat Potential (EDT)

Species	Current	Intrinsic	Habitat Impairment	
Spring Chinook Salmon	1,083	14,436	92%	
Fall Chinook Salmon	22,810	44,367	49%	
Coho Salmon	27,430	106,068	74%	
Winter-run Steelhead	3,686	7,501	51%	

Salmon – VSP Attributes from EDT

Species	Productivity (returns/ spawner)	Capacity (fish)	Equilibrium Abundance (fish)	Diversity (proportion of successful life histories)
Spring Chinook Salmon	3.9	2,971	1,083	49.1%
Fall Chinook salmon	5.4	29,834	22,810	76.3%
Coho Salmon	5.5	33,813	27,430	71.1%
Winter-run Steelhead	10.7	4,282	3,640	72.8%

WDFW presentations

Habitat Limiting Factors

Methods

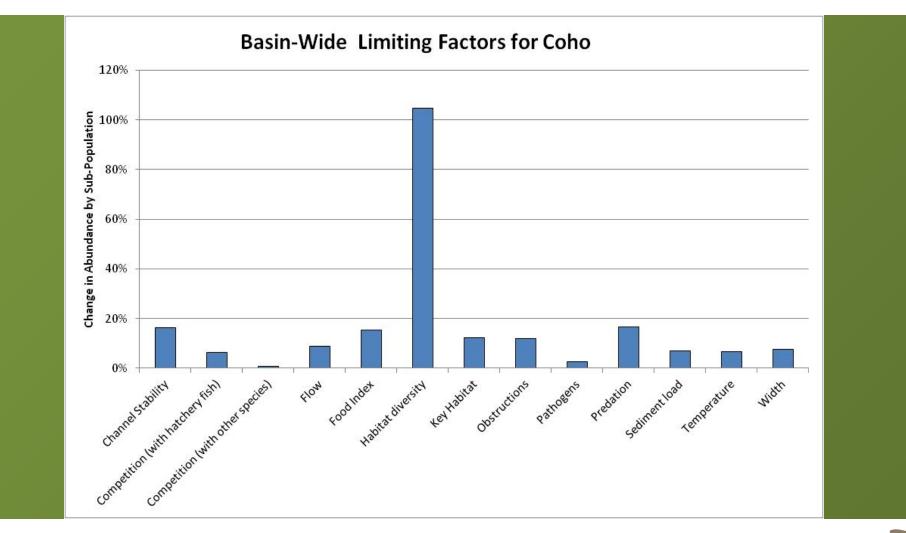
• Smith and Wenger (2001)

• Habitat factors limiting salmonid abundance and production within the Chehalis Basin

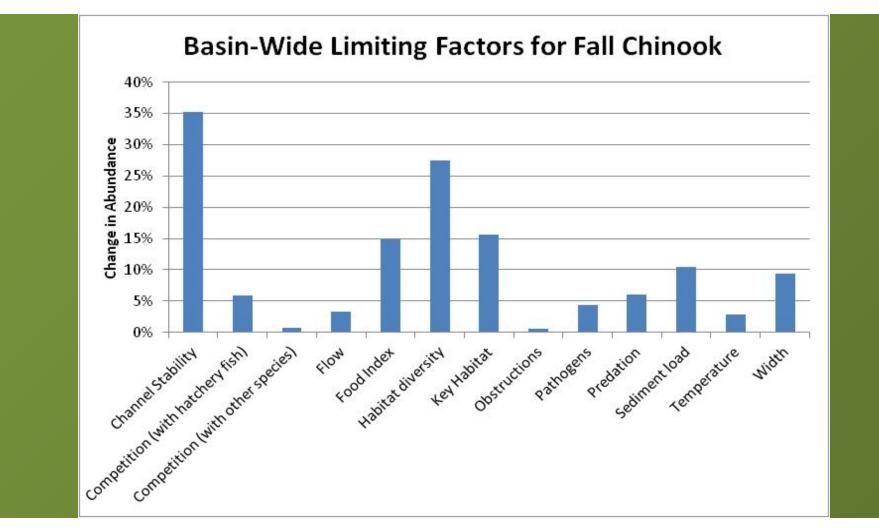
Ecosystem Diagnosis & Treatment Model (2014)

- Modeled the habitat used by salmonids within the Chehalis Basin (current condition compared to intrinsic condition)
- Input and reviews by technical team member experts and local experts

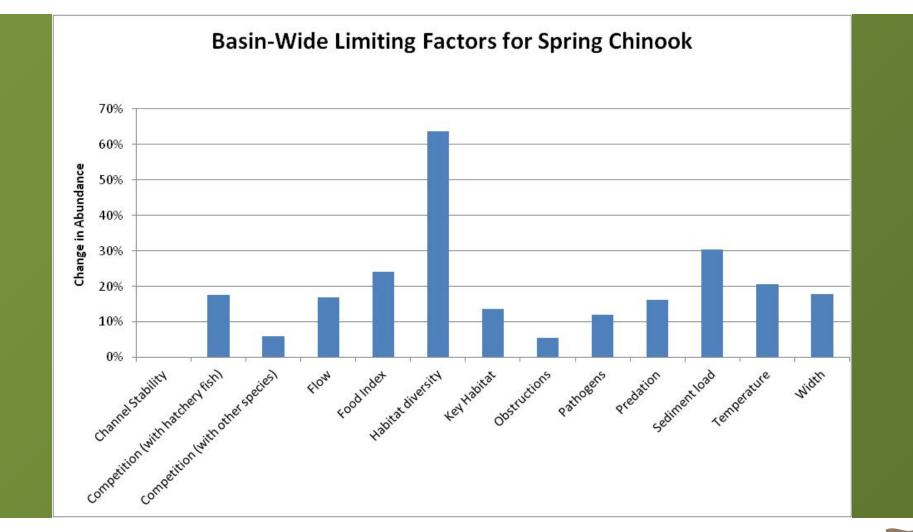
Smith and Wenger

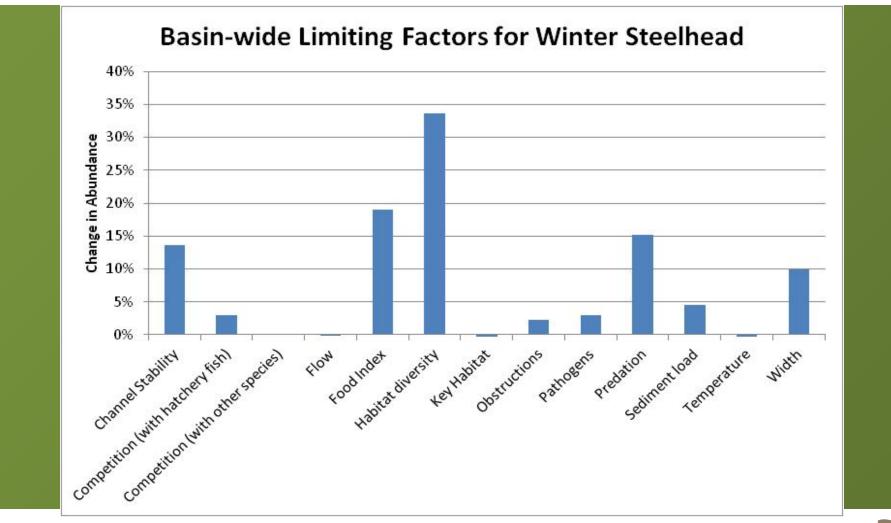

SUB-BASIN UNITS	LIMITING FACTORS
Wynoochee River	Floodplain habitat; Sediment; Riparian habitat; Stream flows; Water quality
Satsop River	Migration barriers; Sediment; Channel stability; Riparian habitat; Stream flows; Water quality
Lower Chehalis Tributaries	Floodplain habitat; Sediment; Habitat diversity; Riparian habitat; Stream flows; Water quality
Lower Chehalis Mainstem	Floodplain habitat; Sediment; Habitat diversity; Riparian habitat; Stream flows; Water quality
Black River	Migration barriers; Floodplain habitat; Sediment; Riparian habitat; Stream flows; Water quality
Scatter Creek	Sediment; Channel stability; Riparian habitat; Stream flows; Water quality
Skookumchuck River	Migration barriers; Floodplain habitat; Sediment; Channel stability; Habitat diversity; Riparian Habitat; Stream flows; Water quality
Newaukum River	Migration barriers; Floodplain habitat; Sediment; Habitat diversity; Riparian Habitat; Stream flows; Water quality
Middle Chehalis Tributaries	Migration barriers; Floodplain habitat; Sediment; Habitat diversity; Riparian Habitat; Stream flows; Water quality
South Fork Chehalis	Migration barriers; Sediment; Channel stability; Habitat diversity; Riparian Habitat; Stream flows; Water quality
Upper Chehalis	Migration barriers; Floodplain habitat; Sediment; Channel stability; Habitat diversity; Riparian Habitat; Stream flows

Summary


• No single limiting factor

 Most prevalent are riparian degradation, water quality, sedimentation, and associated issues


EDT - Coho


EDT – Fall Chinook

EDT – Spring Chinook

EDT – Winter Steelhead

Limiting Factors for Upper Chehalis Coho Salmon

	Limiting Factors for Upper Chehalis Coho Salmon							
80% -								
70% -								
60% -								
e 50% - pundance 40% -								
5							-	
10 30% -								<u> </u>
20% -								
10% -								
0% -						<u>III</u>	با بالليدا	IIIII
0,0	mel Stability Flow Food Index obitat diversity Key Habitat Obstructions Pathogens Predation ediment load Temperature Width	mel Stability Food Index Pitat diversity Key Habitat Obstructions Pathogens Predation ediment load Temperature Width	annel Stability Flow Food Index Key Habitat Key Habitat Obstructions Pathogens Predation Sediment load Temperature Vidth	nnel Stability Food Index Food Index Obstructions Pathogens Predation ediment load Width	nnel Stability Flow Food Index vitat diversity Key Habitat Obstructions Pathogens Predation ediment load fenperature Width	annel Stability Food Index Food Index Mey Habitat Key Habitat Obstructions Pathogens Predation Sediment load Temperature Vidth	annel Stability Food Index Food Index Key Habitat (bestructions Pathogens Predation Sediment Ioad Temperature Width	annel Stability Food Index Food Index Key Habitat Key Habitat Destructions Predation Sedimentload Temperature Width
	Channel Stability Food Index Food Index Key Habitat Key Habitat Obstructiona Pathogens Predation Sediment Joac Viriature Viriature Viriature Viriature	Channel Stability Flow Food Index Habitat diversity Key Habitat Key Habitat Obstructions Pathogens Predation Predation Sediment load Sediment load Virtubat	Channel Stabilit Floo Floo Habitat diversit Key Habitat Vey Habitat Predatio Predatio Sediment loa Temperatur Widti	Channel Stability Food Indee Habitat diversity Key Habitat Obstruction Pathogen Predation Sediment load Viridh	Channel Stability Flow Food Indexs Key Habitat Key Habitat Constructions Pathogens Predation Sediment load Sediment load Width	Channel 5 Foc Key Chastr c Chastr c Pal Pr Fr Temp	Channel Stability Flow Food Index Habita diversity Key Habitat Obstructions Pathogens Predation Sediment load Temperature Vidth	Channel Stability Food Index Food Index Key Habitat Obstructions Pathotations Predation Sediment Load Temperature Vitth
	Lower Chehalis: Porter Creek to Satsop	Lower Chehalis: Black River to Porter Creek	Lower Chehalis: Skookumchuck River to Black River	Middle Chehalis: Newaukum River to Skookumchuk River	Middle Chehalis: South Fork to Newaukum River		Upper Chehalis: Proposed Dam to Elk Creek	
	3	7	12	16	20	22	24	25

EDT Commonalities

Lack of Habitat Diversity (lack of wood)
Channel stability (channelization and lack of connectivity to floodplains)

Habitat Enhancement

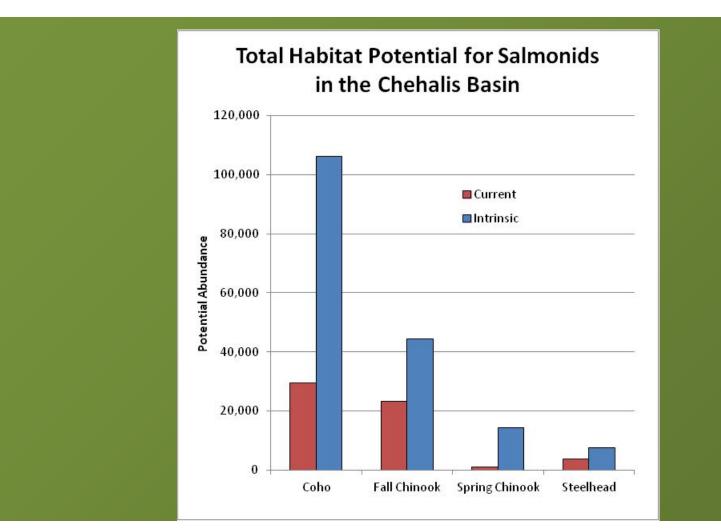
Actions to Address Limiting Factors

- Focus on salmon due to lack of information for other species
- Actions identified in 3-day workshop and WDFW follow up workshop
- Identified actions will be modelled for salmon using EDT
- Qualitatively assessed for Other Fish and Non-Fish

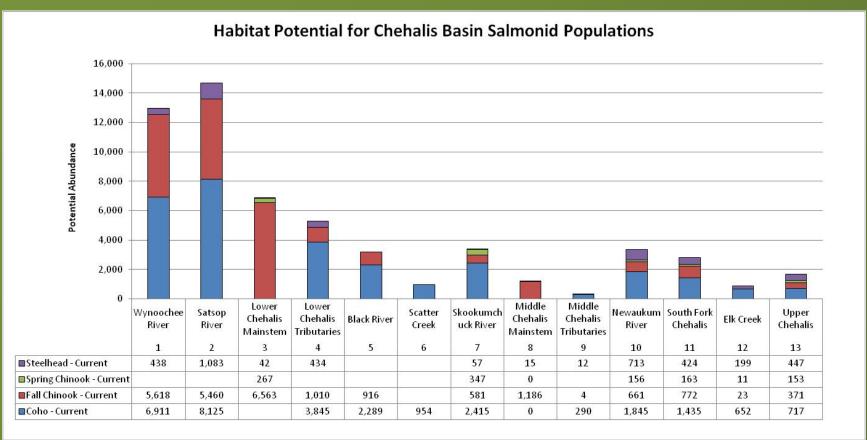
Summary of Identified Actions

- Remove/improve barriers to fish passage (culverts)
- Riparian Enhancement/Restoration/Preservation
 - In upper areas where forest practices are important
 - In lower areas where agriculture and development are impacting the rivers

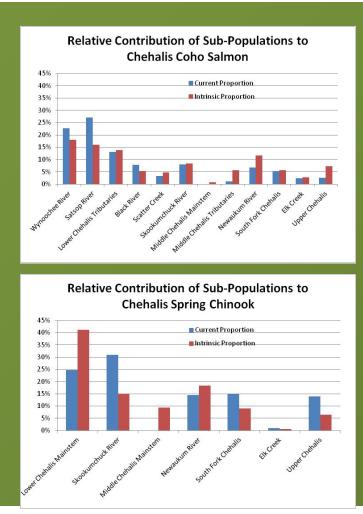
Summary of Identified Actions (con't)

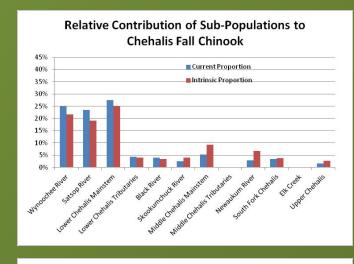

- Add in-water wood structure site specific depending on geomorphology and need
 - Sediment trapping structures
 - Large wood placement
 - In-stream log cribs
- Floodplain re-connection
 - Potentially reconnect oxbows in specific areas that won't exacerbate invasive predator issues
 - Remove levees
 - Allow river to move within the floodplain
- Education

Summary of Identified Actions (con't)

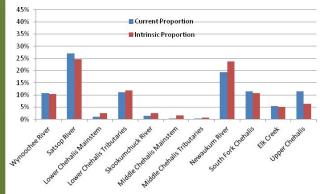

• Modeled to date:

- Upper basin riparian restoration for managed forests
- Barrier removal

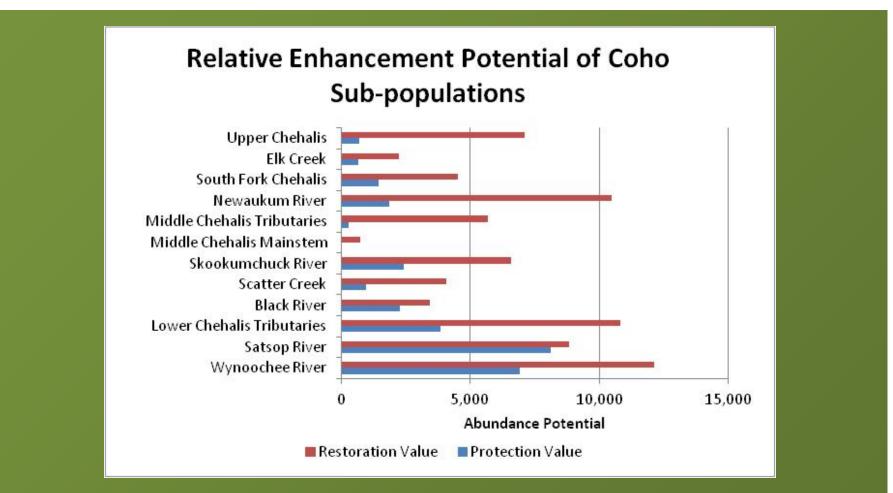

Salmonid Habitat Potential: Chehalis Basin



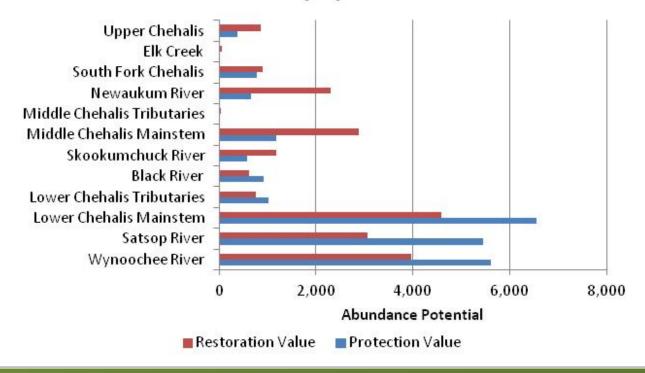
Salmonid Habitat Potential by Sub-Population



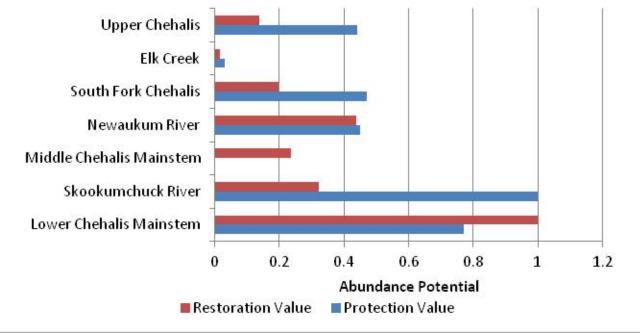
Relative Contribution of Sub-Populations to Species Total Abundance



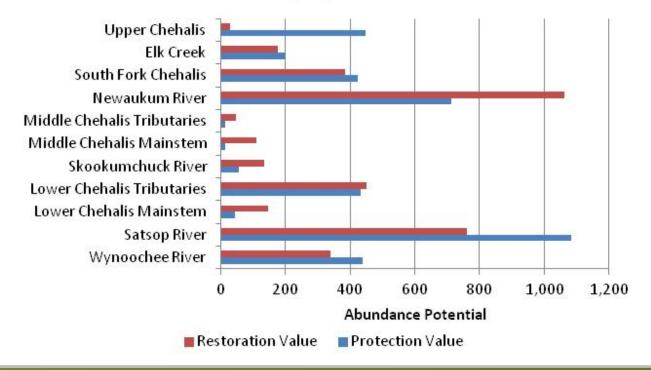
Relative Contribution of Sub-Populations to Chehalis Steelhead



Enhancement Opportunities at the Chehalis Basin Scale: Coho Salmon

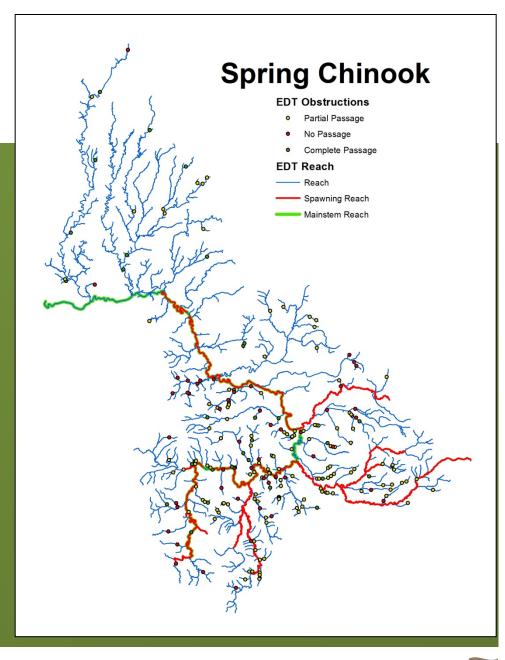

Enhancement Opportunities at the Chehalis Basin Scale: Fall Chinook

Relative Enhancement Potential of Fall Chinook Sub-populations


Enhancement Opportunities at the Chehalis Basin Scale: Spring Chinook

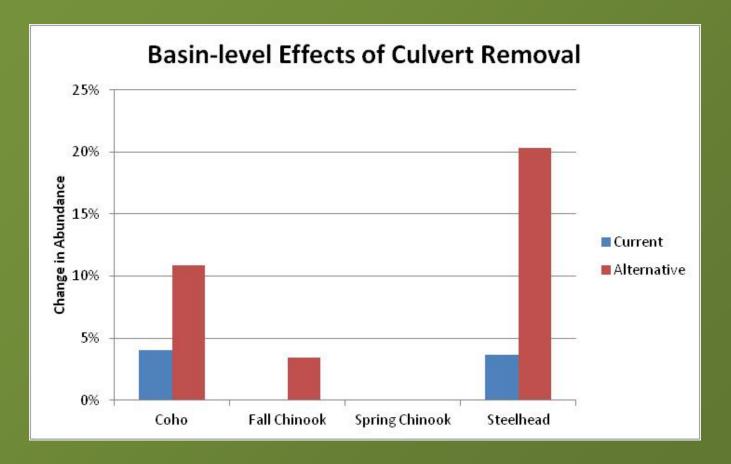
Relative Enhancement Potential of Spring Chinook Sub-populations

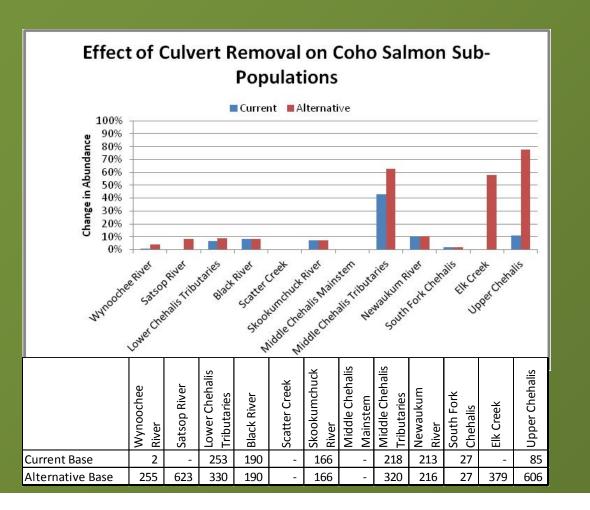
Enhancement Opportunities at the Chehalis Basin Scale: Steelhead


Relative Enhancement Potential of Steelhead Sub-populations

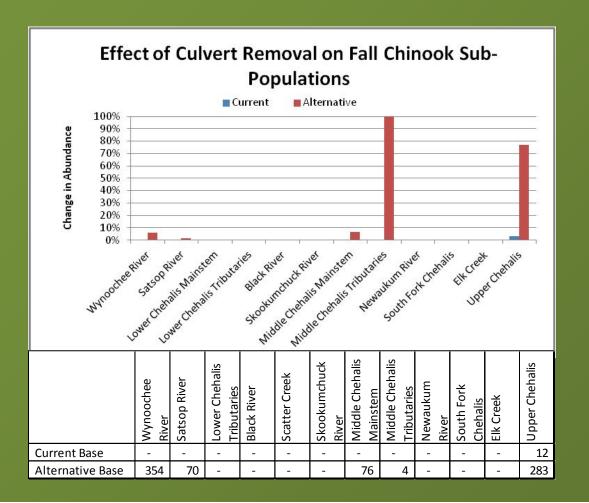
Obstructions

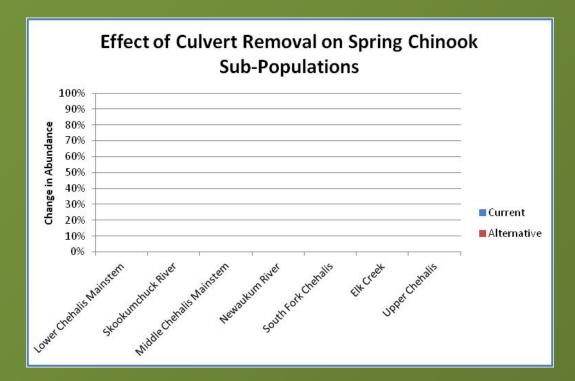
• Obstructions evaluated only if below a spawning reach

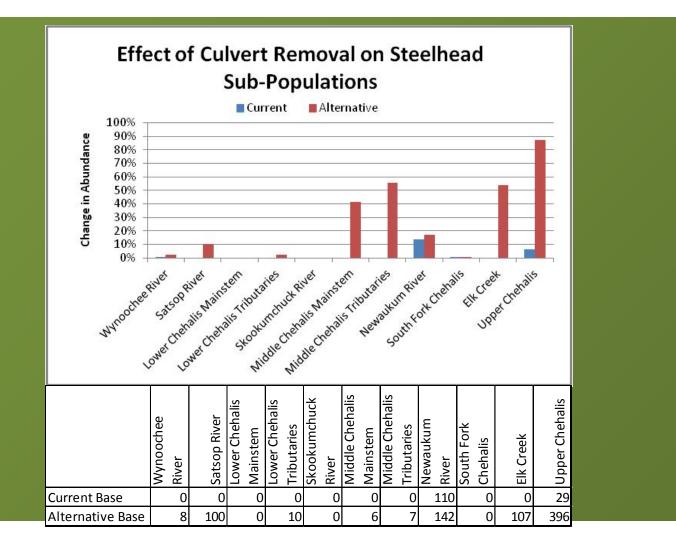

- Obstructions from available databases
- Unrated obstruction = 100% passage (base condition)
- Alternative: Assume unrated obstructions = 50% blockage

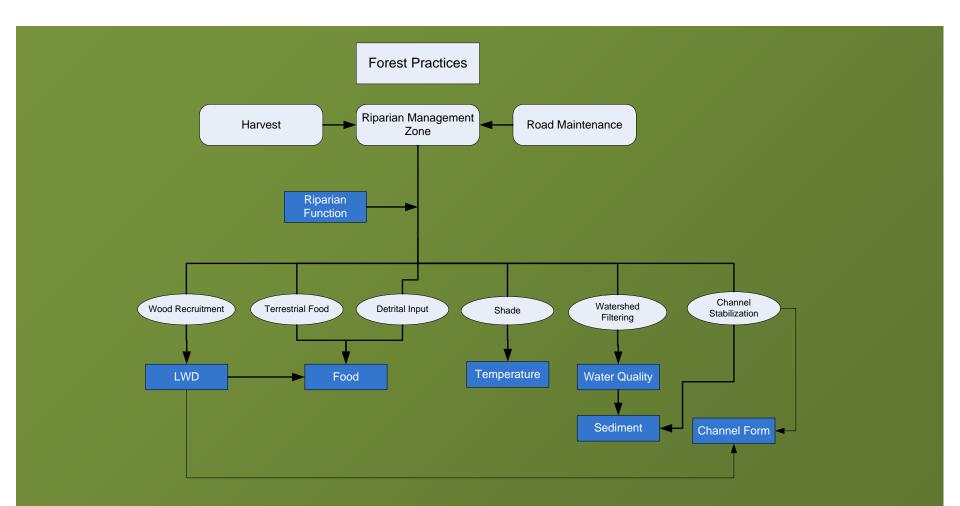

Obstructions to Adult Fish Passage in Chehalis EDT model

Subbasin	Reaches	Obstructions	Partial Blockage	Complete Blockage	100% Passage	Not Rated
Above Elk Creek	121	18	5	9	0	4
Black River	61	7	7	0	0	0
Lower Chehalis Mainstem	31	0	0	0	0	0
Lower Chehalis Tributaries	298	40	13	16	0	11
Middle Chehalis Mainstem	31	1	0	0	0	1
Middle Chehalis Tributaries	220	69	32	19	1	17
Newaukum River	117	24	19	4	0	1
Satsop River	152	10	1	0	0	9
Scatter Creek	15	3	0	3	0	0
Skookumchuck River	74	16	6	8	0	2
South Fork Chehalis River	154	28	18	7	0	3
Wynoochee River	104	8	2	2	0	4
Total in EDT	1378	224	103	68	1	52

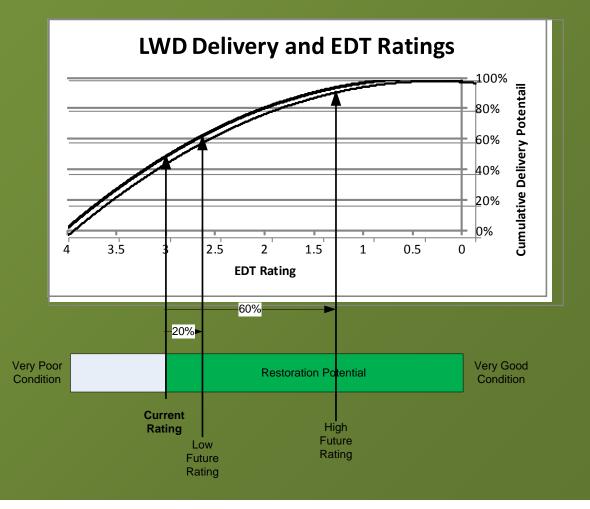

Species Effects of Culvert Removal in the Chehalis Basin


Effect of Obstruction Removal on Coho Sub-Populations

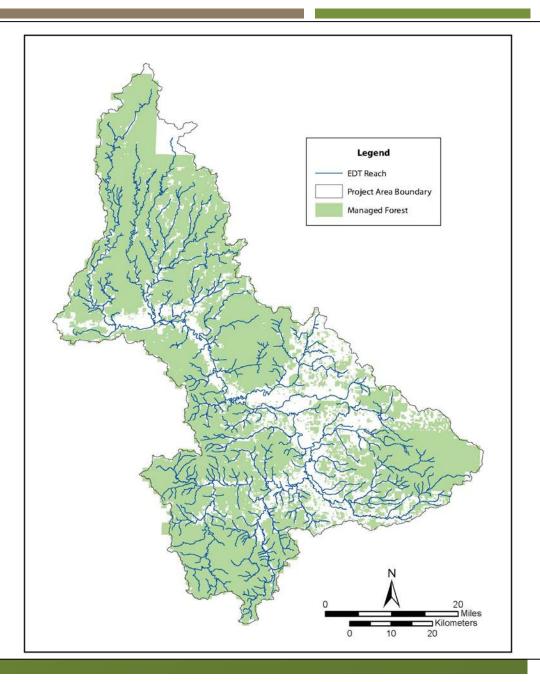

Effect of Obstruction Removal on Fall Chinook Sub-populations


Effect of Obstruction Removal on Spring Chinook Sub-populations

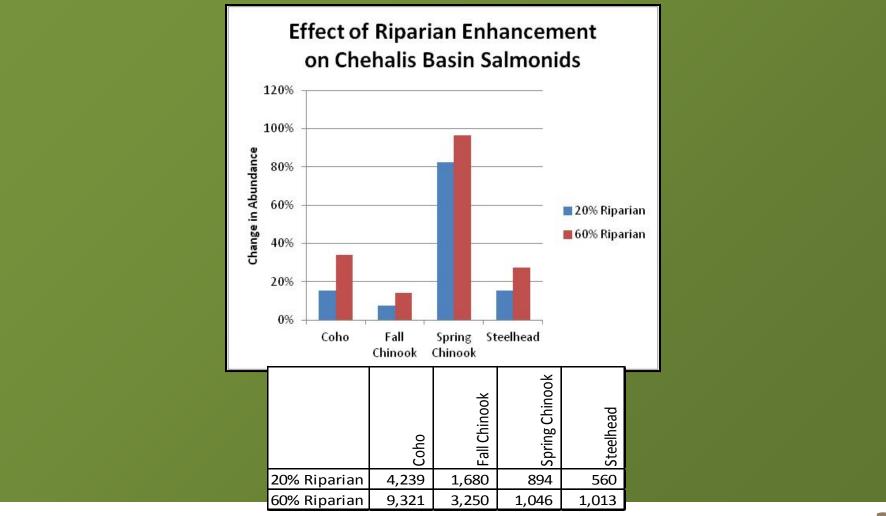
Effect of Obstruction Removal on Steelhead Sub-populations


Riparian Zone Conceptual Model

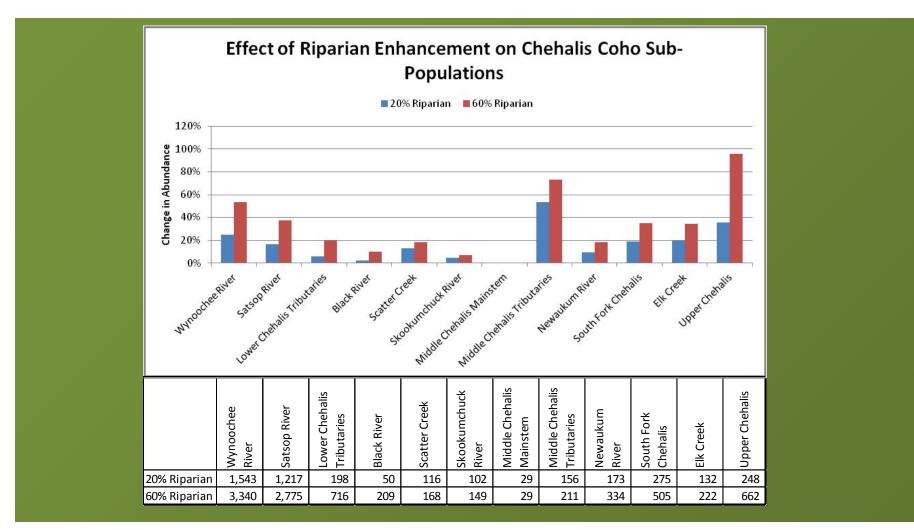
Riparian Enhancement

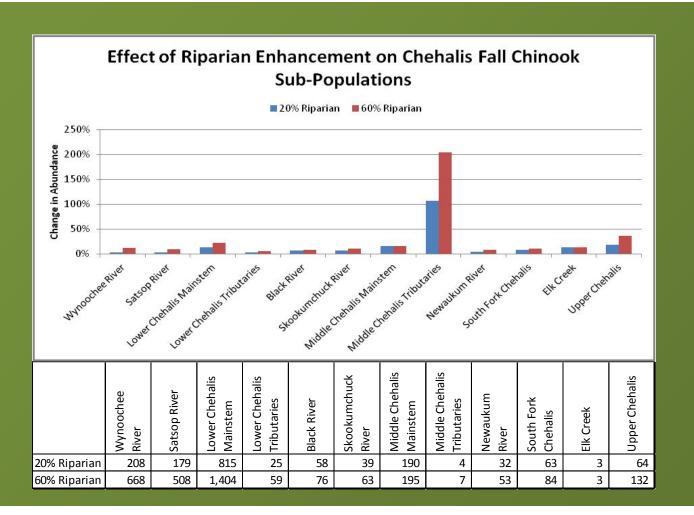

 Evaluated two future states for riparian conditions in managed forests

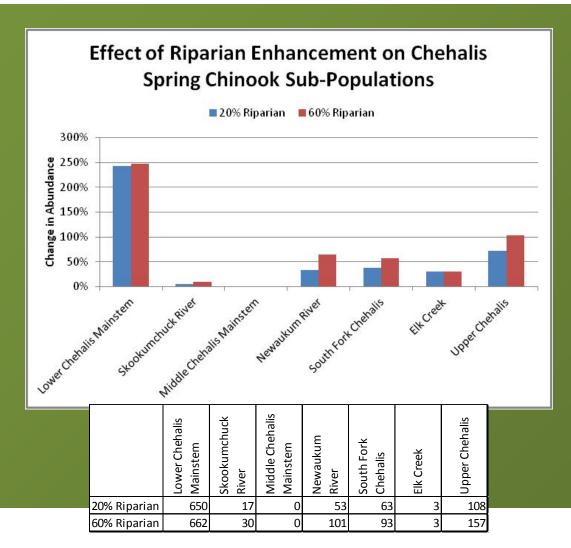
 Changes were made to all reaches in managed forests

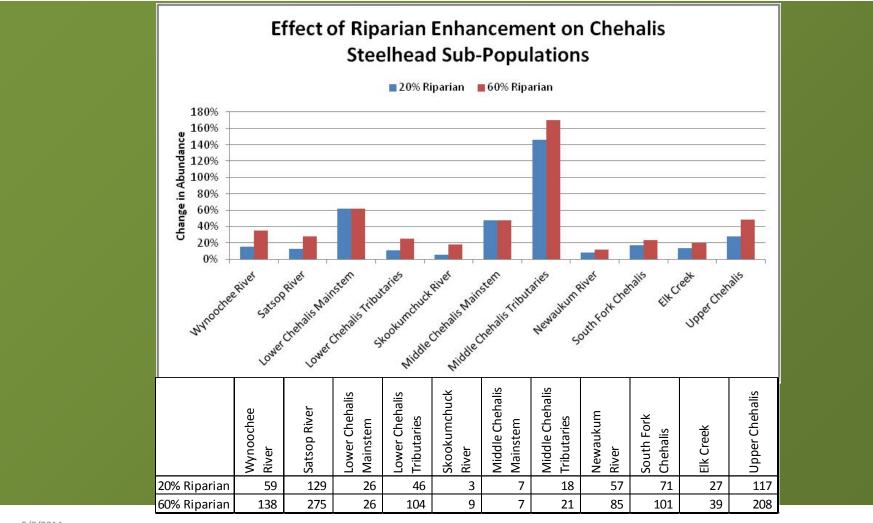


Riparian


Extent of managed forest in Chehalis Basin


Species-Level Effects of Riparian Enhancement


Effect of Riparian Enhancement on Coho


Effect of Riparian Enhancement on Fall Chinook

Effect of Riparian Enhancement on Spring Chinook

Effect of Riparian Enhancement on Steelhead

- Limited available information for these species in particular for the Chehalis Basin
- Limiting factors are based on known limiting factors for species and not known to be limiting in the basin
- Available information and best professional judgment was used

SPECIES	LIFE-STAGE	HABITAT REQUIREMENTS	POSSIBLE LIMITING FACTORS
Pacific lamprey	Adult spawning	Gravel substrate at pool tails and in riffles	Living space with suitable coarse, silt-free substrate – sufficient current velocity is key to maintaining silt-free substrate
Pacific lamprey	Larvae	Silty backwater along mainstem reaches and tributaries	Depositional area protected from high velocity current; these are successional habitats, but changes in sediment transport (deposition and flushing) could change rate of succession and/or change connectivity among habitats
White sturgeon	Feeding adults	Lower mainstem pools	Living space with sufficient depth, including marine access —this species is not strongly dependent on the Chehalis River Basin but is thought to move into the river from Grays Harbor to forage, possibly for freshwater mussels; no known spawning or rearing in the Chehalis Basin; migration upstream can be to above the Black River
Chum salmon	Spawning	Gravel substrate at pool tails and in riffles	Freshwater limiting factors for chum salmon are largely restricted to spawning and incubation, with flood scour and superimposition (crowding) being the two factors most likely limiting them; spatial range includes reaches up to the Black River; chum salmon can use a diversity of spawning habitat water depths and channel size
Eulachon	Spawning	Located primarily in the lower Basin and dependent on sand and pea-sized gravel for spawning	Freshwater limiting factors for eulachon are largely restricted to river conditions and spawning, with lack of appropriate substrate the most likely limiting factor; Eulachon are present in the Wynoochee and Satsop rivers; once juveniles emerge from the substrate they are flushed out with flow

SPECIES	LIFE- STAGE	HABITAT REQUIREMENTS	POSSIBLE LIMITING FACTORS
Speckled dace	Adults	Mainstem pools	Living space with suitable coarse silt-free substrate – sufficient current velocity is key to maintaining silt-free substrate; in the absence of any studies on limiting factors, living space is the most likely limiting factor
Speckled dace	Spawning	Gravel substrate at pool tails and in riffles	Living space with suitable coarse silt-free substrate – sufficient current velocity is key to maintaining silt-free substrate
Largescale sucker	Adults	Mainstem pools; there is a close association of largescale suckers and mountain whitefish	Living space with suitable coarse silt-free substrate might be a limiting factor for these long-lived fish – sufficient current velocity is key to maintaining silt-free substrate
Largescale sucker	Spawning	Pool tailouts with less specific substrate	Similar hydraulic and substratum needs to rainbow trout and other smaller-bodied salmonids
Largescale sucker	Fry	Silty backwater habitats on the mainstem and in tributaries	Require depositional areas protected from high velocity current during summer; these are successional habitats, but changes in sediment transport (deposition and flushing) could change the rate of succession and/or change connectivity

SPECIES	LIFE- STAGE	HABITAT REQUIREMENTS	POSSIBLE LIMITING FACTORS
Reticulate sculpin	All life stages	Mainstem pools	Living space with suitable coarse silt-free substrate may be a limiting factor – sufficient current velocity is key to maintaining silt-free substrate
Riffle sculpin ¹	All life stages	Silty backwater habitats on the mainstem and in tributaries	Vegetated depositional areas protected from high velocity current; these are successional habitats, but changes in sediment transport (deposition and flushing) could change rate of succession and/or change connectivity; access to cooler water temperatures could also be limiting
Olympic mudminnow	All life stages	Oxbow lakes and off-channel marshes	Maintain water level while minimizing invasion by non-native predators; potential impacts to their habitats are similar to those listed for previous habitats; non-native predators (primarily bass) are believed to be a major limiting factor
Largemouth bass (non-native predator)	All life stages	Oxbow lakes and off-channel marshes	Off-channel, low-velocity habitats with abundant food sources.
Smallmouth bass (non-native predator)	All life stages	Mainstem and off-channel	Moderately low-velocity habitats with abundant food sources (somewhat colder- adapted than largemouth bass)

Other Fish Summary

- Silt free substrate is important to many of these species
- Non-native predators are likely negatively impacting many of these species
- Floodplain connectivity is important to many of these species

Non Fish

Northern red legged Frog

Oregon Spotted Frog

- Similar to Other Fish, very limited information on limiting factors in the Chehalis Basin
- Many limiting factors are based on known limiting factors for species and not known to be limiting in the basin
- Available information and best professional judgment was used

Focal Species	Species Limiting Factors in the Chehalis Basin
Northern red-	Lack of upland forest adjacent to off-channel breeding habitat due to conversion of land use such as agriculture.
legged frog	Presence of warm water exotic predators, American bullfrog, and several fish species such as sunfish, yellow perch, smallmouth bass, and bullhead catfish.
Western toad	Lack of off-channel habitat with shallow, low flow, and unvegetated conditions.
	Presence of non-native invasive vegetation such as reed canarygrass in open water habitat.
	Lack of quality upland prairie habitat adjacent to aquatic habitat.
Oregon spotted frog	Presence of warm water exotic predators, American bullfrog, and several fish species such as sunfish, yellow perch, smallmouth bass, and bullhead catfish.
	Presence of nonnative exotic vegetation such as reed canarygrass that forms a monoculture in aquatic habitats, affecting breeding habitat in particular.
	Lack of open canopy adjacent to aquatic breeding habitat.
Coastal tailed frog	Lack of in-stream LWD.
	Lack of adjacent mature upland forest as a source of LWD.
	Warmer water temperatures (data gap, additional research needed).
5/9/2014	Quality of adjacent upland habitat conditions (data gap, additional research needed).

Focal Species	Species Limiting Factors in the Chehalis Basin
Van Dyke's salamander	Lack of little disturbed riparian habitats. Lack of LWD in intermediate decay classes in riparian habitat.
Western pond turtle	Presence of warm water exotic predators, American bullfrog, and several fish species such as sunfish, yellow perch, smallmouth bass, and bullhead catfish. Lack of quality (open) upland prairie habitat adjacent to aquatic habitat. Degraded prairie habitat due to the presence of nonnative invasive vegetation. Lack of LWD in off channel or open water habitat.
Beaver	Identifying limiting factors for beaver within the Chehalis Basin is difficult due to the lack of existing information on beaver presence. In general, limiting factors for beaver typically include the quality of riparian habitat and the presence of deciduous trees.

Non-Fish Summary

- Exotic aquatic predators is probably limiting to all Key amphibian species and the turtle.
- Suitable juxtaposed aquatic and riparian habitats are likely limiting for Northern red-legged frog, western toad and the turtle, although the type of riparian habitat and width desired varies with the species.
- Older seral stage coniferous forest that can produce large wood may be limiting for coastal tail frog and Van Dyke's salamander.
- Information on distribution and abundance of all non-fish taxa remains a major gap that needs address to better direct options.

	SALMON RESTORATION		OTHER RESTORATION ACTIONS				
KEY SPECIES	BARRIER REMOVAL	RIPARIAN ENHANCEMENT	IN WATER WOOD STRUCTURE	FLOODPLAIN RECONNECTION	INVASIVE PREDATOR MANAGEMENT	INVASIVE VEGETATION MANAGEMENT	NOTES
Chum salmon	+	+	+	+	+	+	Chum would benefit from all salmon restoration projects (except perhaps those aimed primarily at juvenile salmonids)
Eulachon	u	+	+	u	u	u	
Pacific lamprey	+	+	+	n	u	u	
White sturgeon	+	+	u	u	u	u	
Olympic mudminnow	u	u	u	n	+	u	
Speckled dace	+	+	+	+	u	u	
Largescale sucker	+	+	+	+	u	u	
Riffle sculpin	u	u	u	u	u	u	
Reticulate sculpin	u	u	u	u	u	u	
Smallmouth bass	+	u	+	+	u	u	
Largemouth bass	+	u	+	+	u	u	

Notes: *n* = neutral *u* = unknown

Projects would likely be positive to neutral

- Silt reduction
- In channel habitat complexity
- Habitat complexity including off-channel connection
- Removal of non-native predators would likely be beneficial
- Due to the lack of data, specifics of a project design and location should be reviewed on a caseby-case basis to determine potential impacts by species

	SALMON RESTORATION		OTHER RESTORATIO N ACTIONS				
KEY SPECIES	BARRIER REMOVAL	RIPARIAN ENHANCEMENT	IN WATER WOOD STRUCTURE	FLOODPLAIN RECONNECTION	INVASIVE PREDATOR MANAGEMENT	INVASIVE VEGETATION MANAGEMENT	NOTES
Northern red-legged frog	+/-	++	n	+/-	++	+/-	Barrier removal and reconnection to off channel habitat would be positive as long as they do not introduce invasive predators
Western toad	+/-	-	n	n	+	+	Barrier removal would be positive as long as they do not introduce invasive predators
Oregon spotted frog	n	-	u	u/-	+	+	Reconnection to off channel habitat would be unknown as long as they do not introduce invasive predators. If predators are introduced, it would be negative.
Coastal tailed frog	+	+	++	n	n	n	
Van Dyke's salamander	+	++	n	n	n	u	
Western pond turtle	+	-	++/n	+	+	+	Basking sites would be very beneficial if they are lacking and would be neutral if not lacking
North American beaver	+	++	u	+	n	n	

Notes: *n* = neutral *u* = unknown

Non-Fish Habitat Enhancement

- Removal of aquatic exotic predators and/or habitat modification to disfavor aquatic exotic predators can help several non-fish species.
- Preservation of riparian areas suitable to the upland needs of several species that is juxtaposed to their required aquatic habitat will help Western toad, Northern Red-legged Frog, and Western Pond Turtle.
- Set asides in coniferous forest to generate older seral stage stands will help Coastal tailed Frog and Van Dyke's salamander.

Climate change

ASEP Climate Change

Analysis addresses:

 How would climate change affect species compared to the continuation of existing conditions?

Climate Change Information Sources

- Climate Impacts Group (CIG) at University of Washington
 - State of Knowledge Report- Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers, 2013 (http://cses.washington.edu/cig/)
 - Site-specific projections for Chehalis Basin (http://warm.atmos.washington.edu/2860/products/sites/)

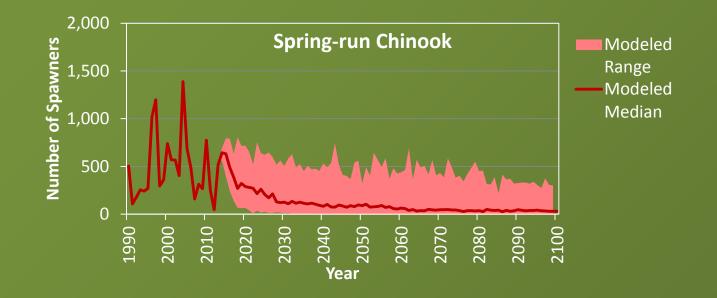
• Wild Fish Conservancy

 Climate Change in the Chehalis River and Grays Harbor Estuary, 2013. (http://wildfishconservancy.org/resources/publications/wild-fishruns/climate-change-chehalis-river-grays-harbor-estuary)

Climate Change Parameters

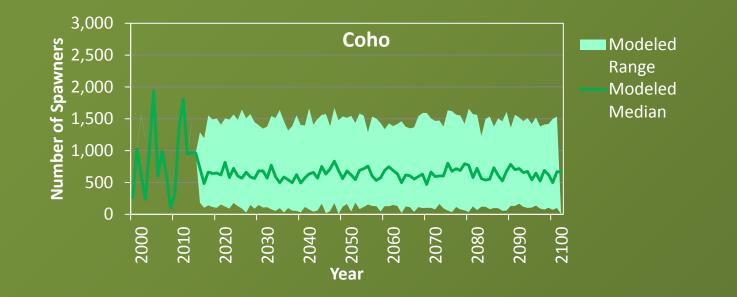
- Water temperature
- Streamflow
 - Average monthly flow
 - Peak flows
 - Low flows
- Sea level rise effects on estuary and lower river

Climate Change Scenario


• A1B greenhouse gas emissions scenario

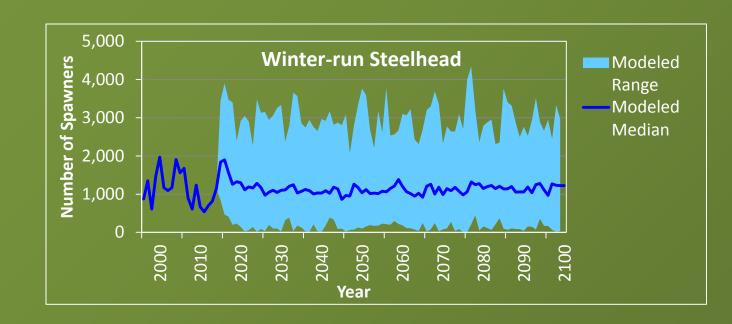
 A medium scenario in which greenhouse gas emissions increase to peak in mid-21st century then decline in the final decades

Climate Change – Salmon


- Adjusted habitat capacities based on estimated changes in streamflows
- Adjusted environmental conditions (water temperature and flows)

Climate Change – Spring Chinook

- Declining Trend Over Time
- Reduced Compared to Continuation of Existing Conditions
- "Immediate" Changes Once Parameter Changes Are Input


Climate Change – Coho

Slight Increase Compared to Continuation of Existing Conditions

"Immediate" Changes Once Parameter Changes Are Input

Climate Change – Fall Chinook

- Reduced Compared to Continuation of Existing Conditions
- "Immediate" Changes Once Parameter Changes Are Input
- High variability among estimates

Climate Change – Summary of Preliminary Salmon Results

- Reduced numbers of Chinook and Steelhead estimated with climate change in all scenarios
- Slight increase in coho numbers between climate change and the continuation of existing conditions

Climate – positive restoration actions

- Barrier removal: can aid access to cooler streams
- Floodplain reconnection: can ameliorate temperature increases by hyporheic flow
- Aggrading incised channels: restores aquifer storage, increases summer base flow, lowers summer temperatures, increases habitat diversity
- Actions that restore stream flow: ameliorate low flows and increase diversity

Climate – positive restoration actions

- Restoring riparian habitat: cools streams, provides organic matter, increases wood supply and habitat diversity, and reduces fine sediments
- Reducing erosion and sediment delivery: improves habitat diversity, increases pool depth, narrows widened channels
- Instream rehabilitation: improves habitat diversity, provides cover, improves sediment storage

Climate change – Other fish and nonfish species - methods

• PHABSIM (flow), HSI, and correlative approaches:

- Quantity, location, connectivity, and timing of suitable habitat conditions related to specific life history requirements
- Projected changes in temperature relative to identified temperature preferences or lethal thresholds for species
- Magnitude of projected changes are averages (variability around the averages are important)
- Changes in species competitive and predatory interactions possibly resulting from greater overlap in distribution
- Sea level rise

Climate change – other fish and nonfish species

- Response highly variable
- Depends on species thermal preferences (adaptations), life stage, location (reach)
- In general
 - Warm adapted species benefit from climate change and impacted by releases from multi-purpose dam
 - Cool adapted species impacted by climate change and benefit from releases from multi-purpose dam

Climate change – PHABSIM results

Species	Life history	Climate	Multi-purpose dam
Pac. lamprey	Spawning	- ≤ 2%	+ ≤ 15%
	Rearing	+ ≤ 3%	- ≤ 13%
LM and SM bass	Spawning	+ ≤ 5%	- ≤ 36%
	Rearing	+ ≤ 3%	-≤ 17%
Speckled dace	Spawning	+ ≤ 1%	- ≤ 5%
	Rearing	+ ≤ 1%	- 5 to + 0.6%
Largescale sucker	Spawning	- 2 to + 1%	- 8 to + 22%
	Rearing	+ ≤ 2%	- 8 to + 0.4%
Mountain whitefish	Spawning	- ≤ 4%	+ ≤ 9%
	Rearing	- ≤ 4%	+ ≤ 22%
W. Toad		+ ≤ 1%	- ≤ 7%

5/9/2014

Climate change – correlative analysis

- Lack information on off-channel temperatures
- Warming temperatures likely favor exotic predators; potential negative effect on native fish and non-fish species utilizing off-channel habitats
- Increases in winter flows could increase floodplain inundation
- Decreases in summer flows could decrease connectivity of off-channel habitats
- Some amphibians have specific thermal requirements
- Effects of sea level rise: uncertain

Summary

• Limiting Factors

- Temperature
- Lack of Wood
- Channel Diversity
- Floodplain Connection
- Restoration Actions
 - Culvert Removal
 - Wood
 - Riparian protection, enhancement, and restoratin
 - Placement
 - Off Channel Connection Projects

Summary Salmon Restoration

	Change in Current Abundance					
	Obstruction Removal		Riparian Enhancement			
	Low	High	Low	High		
Coho	4%	11%	15%	34%		
Fall Chinook	0%	3%	7%	14%		
Spring Chinook	0%	0%	83%	97%		
Steelhead	4%	20%	15%	27%		

Preliminary Costs for Culvert Removal

	Culvert	Avg. Project Cost		
Sub Population Area	Obs.	Low = \$150,000	Medium =\$210,000	High =\$290,000
Above Elk Creek	7	\$ 1,050,000	\$ 1,470,000	\$ 2,030,000
Black River	7	\$ 1,050,000	\$ 1,470,000	\$ 2,030,000
Lower Chehalis Mainstem	0	\$-	\$-	\$-
Lower Chehalis Tributaries	32	\$ 4,800,000	\$ 6,720,000	\$ 9,280,000
Middle Chehalis Mainstem	0	\$-	\$ -	\$-
Middle Chehalis Tributaries	65	\$ 9,600,000	\$ 13,440,000	\$ 18,560,000
Newaukum River	23	\$ 3,450,000	\$ 4,830,000	\$ 6,670,000
Satsop River	1	\$ 150,000	\$ 210,000	\$ 290,000
Scatter Creek	2	\$ 300,000	\$ 420,000	\$ 580,000
Skookumchuck River	11	\$ 1,650,000	\$ 2,310,000	\$ 3,190,000
South Fork Chehalis River	20	\$ 3,000,000	\$ 4,200,000	\$ 5,800,000
Wynoochee River	4	\$ 600,000	\$ 840,000	\$ 1,160,000
Total in EDT	172	\$ 25,650,000	\$ 35,910,000	\$ 49,590,000

Notes: Totals have been rounded up to the nearest \$100,000, averages per culvert have been rounded up to the nearest \$10,000.

Summary – Other Fish and Non Fish

- Salmon restoration projects would have a positive to neutral effect on most Other Fish and Non-Fish species.
- Off channel projects should be assessed on a case by case basis to determine potential effects on Other Fish and non-Fish species.

ASEP Climate Change Summary

Next steps – additional analyses

• EDT adjustments:

- Incorporate WDFW mainstem habitat data
- Incorporate tributary water temperature monitoring data
- Floodplain inundation using HECRAS
- EDT effect of 2007 flood on upper basin habitat
- EDT climate change
- Shiraz iterations
 - Stair step climate over time
 - Existing conditions coho and steelhead

Next steps – additional analyses

- Analyze I-5 alternatives
- Other fish no additional analyses
- Non-fish no additional analyses
- Address technical review comments

Questions

