#### Chehalis Basin Strategy: Reducing Flood Damage and Enhancing Aquatic Species

Aquatic Species Enhancement Plan

*Technical Committee Meeting Olympia, Washington May 7, 2014* 



Preliminary Results - Effects of Flood Retention Alternatives on Aquatic Species

- Background information and biological contextSalmon
  - Ecosystem Diagnosis & Treatment (EDT) model results
  - Shiraz model results
- Other fish
- Non-fish

#### • Next steps

# Background Information – Selected Species

24 key species modeled
Salmon (EDT and Shiraz) – 4
Other fish – 11

- Non-fish 7
- Exotics 2 (three additional species considered stressors)

# Background Information – Species Status

• ESA-listed species Eulachon • Bull trout State species of concern Olympic mudminnow Petitioned for ESA listing Oregon spotted frog (August 2014)

# Background Information – Other Fish and Non-fish Species

- Historical and current population information very limited in Basin.
- Olympic mudminnow unique; center of distribution
- Chum salmon the exception; geo mean of total run size since 2003 = 25,116 fish (no clear trend)
- Highest species richness of amphibians in Washington State; also highest at risk in the state
- Potential Oregon spotted frog listing
- Most extensive floodplain off-channel habitats in Washington State; occupied by seven species of stillwater-breeding amphibians

#### Native Amphibian Species Richness



#### Background – Salmon Trends (WDFW Data)



#### Salmon – Geo Means of WDFW Spawner Index Data (2003–2012)

| Species                  | Total Run | Escapement | Post-harvest<br>Productivity (R/S) |
|--------------------------|-----------|------------|------------------------------------|
| Spring Chinook<br>Salmon | 1,933     | 1,766      | 0.9                                |
| Fall Chinook<br>Salmon   | 14,165    | 11,264     | 1.0                                |
| Coho Salmon              | 58,567    | 42,039     | 1.1                                |
| Winter-run<br>Steelhead  | 9,513     | 8,346      | 0.8                                |

#### Salmon – Habitat Potential (EDT)

| Species                  | Current | Intrinsic | Habitat<br>Impairment |
|--------------------------|---------|-----------|-----------------------|
| Spring Chinook<br>Salmon | 4,481   | 24,754    | 82%                   |
| Fall Chinook<br>Salmon   | 21,713  | 44,652    | 51%                   |
| Coho Salmon              | 27,137  | 107,769   | 75%                   |
| Winter-run<br>Steelhead  | 3,640   | 7,501     | 51%                   |

#### Salmon – VSP Attributes from EDT

| Species                     | Productivity<br>(returns/<br>spawner) | Capacity<br>(fish) | Equilibrium<br>Abundance<br>(fish) | Diversity<br>(proportion of<br>successful life<br>histories) |
|-----------------------------|---------------------------------------|--------------------|------------------------------------|--------------------------------------------------------------|
| Spring<br>Chinook<br>Salmon | 1.8                                   | 7,663              | 4,481                              | 49.1%                                                        |
| Fall Chinook<br>salmon      | 4.1                                   | 28,883             | 21,713                             | 76.3%                                                        |
| Coho Salmon                 | 4.8                                   | 33,277             | 27,137                             | 71.1%                                                        |
| Winter-run<br>Steelhead     | 8.6                                   | 4,102              | 3,640                              | 72.8%                                                        |





#### Salmon – Model Results



# Flood Reduction Alternatives – EDT Modeling Assumptions

| Scenario      | Above Dam                                                                                                | Dam Passage                    | Below Dam                                                                                                     |
|---------------|----------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------|
| Multi-purpose | Inundated reaches<br>converted to limnetic<br>and littoral habitats →<br>juvenile rearing—no<br>spawning | 66% adult and juvenile passage | Reduction in bed scour;<br>reduction in<br>temperature; increased<br>flow; reduction in<br>floodplain habitat |
| FRO 100       | 100% of inundated<br>reaches converted to<br>migrational habitat→<br>no spawning                         | 92% adult and juvenile passage | Lesser reduction in bed<br>scour; temperature<br>unchanged; reduction<br>in floodplain                        |
| FRO 50        | 50% of reaches<br>converted to<br>migrational habitat→<br>some spawning                                  | 92% adult and juvenile passage | Lesser reduction in bed<br>scour; temperature<br>unchanged; reduction<br>in floodplain                        |

#### Basin-wide Effects of Dams (EDT)



#### Coho Salmon Sub-population Effects (EDT)



#### Fall Chinook Sub-population Effects (EDT)



#### Spring Chinook Sub-Population Effects (EDT)



#### Winter Steelhead Sub-population Effects (EDT)



#### Spatial Changes in Upper Chehalis Coho Performance Under Flood Reduction Alternatives (EDT)



#### Shiraz Model Results (Mainstem Only)

#### • Evaluated Upper Chehalis Basin stocks:

- Spring-run Chinook salmon
- Coho salmon
- Winter-run steelhead

#### • Purpose: Assess population responses over time

- Trends
- Variability
- Risk

# Spring-run Chinook Salmon – Flood Retention Only (Shiraz)



# Winter-run Steelhead – Flood Retention Only (Shiraz)



# Coho Salmon – Flood Retention Only (Shiraz)



#### Shiraz Results – Population Risk

- Range in estimated spawners decreased for all three species under dam alternatives
- Spring Chinook: highest estimated spawners under dam alternatives < median number existing conditions
- Winter steelhead: minimum estimated spawners under dam alternatives < minimum estimated under existing conditions (112 fish)
- Coho: Under existing conditions and Flood Retention Only, < 20 fish returned some years</li>

#### Shiraz Model Results – Summary

Response appears to be immediate
Decreased variability over time
Increased risk (i.e., lower lows)

#### **Other Fish and Non-Fish**













#### Northern red legged Frog





#### **Other Fish and Non-fish Methods**

- Baseline conditions and flood retention only were considered to be similar during summer (low flow) months when fish are most active; therefore, comparisons were made only with the multi-purpose facility
- In-channel habitat PHABSIM was used to establish baseline conditions of weighted usable area (WUA)
- Off-channel habitat correlatives were used to quantify the amount of off-channel habitat under both scenarios

#### Other Fish and Non-Fish In-channel Habitat – Baseline

- Flows are more limiting in the upper basin than the lower basin
- Low flows during summer months appears to be a limiting factor for many species

#### In-channel Habitat Results Discussion

- Changes in flow resulted in both increases and decreases in WUA, depending on species and life stage
- Generally, rearing decreased for all species except whitefish, likely due to increased flows during summer months

#### **Off-channel Habitat**

- Looked at 2, 10, 20, 100, and 500 year flood events
- Compared inundated area (at least 0.1 foot) of baseline to dam
- 3 figures
  - Baseline inundation
  - Absolute change in inundation with dam
  - Relative (%) change in inundation with dam







#### **Off-channel Habitat Discussion**

- Area of inundation generally increased closer to the mouth
- For 500, 100, and 20 year the reach with the greatest reduction in inundation was from the dam site to Elk Creek
- Inundation index generally decreases further downstream from the dam
- Dam effects are negligible for a 2 year flood

#### Summary – Salmon (EDT)

- Largest impact on spring-run Chinook and winter-run steelhead (basin scale)
- Largest change in abundance on Upper Chehalis subpopulations
  - Spring Chinook: 100% with FRO100 scenario; 70% with FRO50 scenario
  - Winter steelhead: 62% with FRO100 and FRO50
  - Coho: 62% with FRO100 scenario; 36% with FRO50 scenario
- Some positive effects on middle-to-lower river populations (fall-run Chinook, Winter-run steelhead and coho)

#### Summary – Salmon (EDT and Shiraz)

- General pattern between dam alternatives (EDT): Impacts from FRO100 > FRO50 > Multi-purpose alternative
- Temporal trends (preliminary)(Shiraz):
  - Response appears to be immediate
  - Decreased population variability over time
  - Stocks exposed to increased risk (i.e., lower lows)

# Summary – Other Fish and Non-Fish In-channel Habitat

- Response varied with species thermal preferences (adaptations), life stage, location (reach)
- In general
  - Warm adapted species impacted by releases from multi-purpose dam
  - Cool adapted species benefit from releases from multi-purpose dam
- Low flows during summer months appear to be a limiting factor
- Increased summer flows may have a positive effect on some species
- Much more data is needed to determine in-channel effects on Other Fish and Non-Fish species

#### Summary – Other Fish and Non-Fish Off-channel Habitat

- Increase in inundation would have a positive effect and a decrease in inundation would have a negative effect on the off channel suite of species
  - Pacific lamprey juveniles, Olympic mudminnow, speckled dace, largescale sucker juveniles, riffle sculpin, reticulate sculpin and largemouth bass
  - Coastal tailed frog, Northern red-legged frog, Oregon spotted frog, Western pond turtle, North American Beaver
- Much more data is needed to determine off-channel effects on Other Fish and Non-Fish species

#### Next Steps

#### • EDT adjustments:

- Incorporate WDFW mainstem habitat data
- Incorporate tributary water temperature monitoring data
- Complete EDT analyses of climate change scenarios with dams

#### **Next Steps**

#### • Shiraz runs

• Habitat degradation over time

#### • EDT and Shiraz:

- Model iterations and discuss assumptions
- Other fish no additional analyses
- Non-fish no additional analyses
- Address technical review comments

#### **Extra Slides**



#### Fish-passage Survival Assumptions

| SPECIES AND LIFE STAGE              | MULTI-PURPOSE | FRO   |
|-------------------------------------|---------------|-------|
| Coho Adults                         | 73.6%         | 88.2% |
| Coho Juveniles Upstream             | 61.8%         | 93.1% |
| Coho Juveniles Downstream           | 61.8%         | 93.1% |
| Fall Chinook Adults                 | 73.6%         | 88.2% |
| Fall Chinook Juveniles Upstream     | 61.8%         | 93.1% |
| Fall Chinook Juveniles Downstream   | 61.8%         | 93.1% |
| Spring Chinook Adults               | 73.6%         | 88.2% |
| Spring Chinook Juveniles Upstream   | 61.8%         | 93.1% |
| Spring Chinook Juveniles Downstream | 61.8%         | 93.1% |
| Steelhead Adults                    | 73.6%         | 88.2% |
| Steelhead Juveniles Upstream        | 61.8%         | 93.1% |
| Steelhead Juveniles Downstream      | 61.8%         | 93.1% |

| СГСЛАГИТ                        | 500-Y  | PERCENT |        |
|---------------------------------|--------|---------|--------|
| SEGIVIEINI                      | NO DAM | DAM     | CHANGE |
| Dam to Elk Creek                | 432    | 180     | 58     |
| Elk Creek to SF Chehalis        | 1999   | 1442    | 28     |
| SF Chehalis to Newaukum River   | 5032   | 4836    | 4      |
| Newaukum River to Skookumchuck  | 3114   | 3057    | 2      |
| River                           | 5111   | 5057    | -      |
| Skookumchuck River to Scatter   | 5592   | 5393    | 4      |
| Creek                           |        |         |        |
| Scatter Creek to Black River    | 4003   | 3938    | 2      |
| Black River to Porter Creek     | 6432   | 6309    | 2      |
| Porter Creek to Satsop River    | 7771   | 7662    | 1      |
| Satsop River to Wynoochee River | 5005   | 4953    | 1      |
| Wynoochee to HW 101 Bridge      | 8206   | 8066    | 2      |

| SEGMENT                              | 100-YEAR |      | PERCENT |
|--------------------------------------|----------|------|---------|
|                                      | NO DAM   | DAM  | CHANGE  |
| Dam to Elk Creek                     | 340      | 167  | 51      |
| Elk Creek to SF Chehalis             | 1692     | 905  | 47      |
| SF Chehalis to Newaukum River        | 4796     | 4219 | 12      |
| Newaukum River to Skookumchuck River | 2997     | 2725 | 9       |
| Skookumchuck River to Scatter Creek  | 5224     | 4930 | 6       |
| Scatter Creek to Black River         | 3870     | 3783 | 2       |
| Black River to Porter Creek          | 6183     | 6055 | 2       |
| Porter Creek to Satsop River         | 7528     | 7364 | 2       |
| Satsop River to Wynoochee River      | 4871     | 4818 | 1       |
| Wynoochee to HW 101 Bridge           | 7844     | 7643 | 3       |

| СЕСЛИГЛІТ                            | 20-YEAR |      | PERCENT |
|--------------------------------------|---------|------|---------|
| SEGIVIEINI                           | NO DAM  | DAM  | CHANGE  |
| Dam to Elk Creek                     | 250     | 156  | 38      |
| Elk Creek to SF Chehalis             | 1195    | 499  | 8       |
| SF Chehalis to Newaukum River        | 3855    | 2880 | 2       |
| Newaukum River to Skookumchuck River | 2458    | 2332 | 4       |
| Skookumchuck River to Scatter Creek  | 4499    | 4007 | 2       |
| Scatter Creek to Black River         | 3636    | 3539 | 3       |
| Black River to Porter Creek          | 5877    | 5778 | 2       |
| Porter Creek to Satsop River         | 7112    | 6992 | 1       |
| Satsop River to Wynoochee River      | 4709    | 4672 | 2       |
| Wynoochee to HW 101 Bridge           | 7089    | 6829 | 1       |

| SEGMENT                              | 10-YEAR |      | PERCENT<br>CHANGE |
|--------------------------------------|---------|------|-------------------|
|                                      | NO DAM  | DAM  |                   |
| Dam to Elk Creek                     | 204     | 155  | 24                |
| Elk Creek to SF Chehalis             | 892     | 354  | 60                |
| SF Chehalis to Newaukum River        | 3153    | 2275 | 28                |
| Newaukum River to Skookumchuck River | 2362    | 2104 | 11                |
| Skookumchuck River to Scatter Creek  | 4021    | 3616 | 10                |
| Scatter Creek to Black River         | 3521    | 3414 | 3                 |
| Black River to Porter Creek          | 5756    | 5614 | 2                 |
| Porter Creek to Satsop River         | 6941    | 6838 | 1                 |
| Satsop River to Wynoochee River      | 4647    | 4623 | 1                 |
| Wynoochee to HW 101 Bridge           | 6653    | 6474 | 3                 |

| CECNAENIT                            | 2-YEAR |      | PERCENT |
|--------------------------------------|--------|------|---------|
| SEGIVIENI                            | NO DAM | DAM  | CHANGE  |
| Dam to Elk Creek                     | 149    | 149  | 0       |
| Elk Creek to SF Chehalis             | 296    | 297  | 0       |
| SF Chehalis to Newaukum River        | 1571   | 1574 | 0       |
| Newaukum River to Skookumchuck River | 1407   | 1409 | 0       |
| Skookumchuck River to Scatter Creek  | 2659   | 2660 | 0       |
| Scatter Creek to Black River         | 2983   | 2984 | 0       |
| Black River to Porter Creek          | 4762   | 4763 | 0       |
| Porter Creek to Satsop River         | 6352   | 6352 | 0       |
| Satsop River to Wynoochee River      | 4506   | 4506 | 0       |
| Wynoochee to HW 101 Bridge           | 5536   | 5536 | 0       |