Chehalis Basin Strategy

Policy Workshop Water Retention May 22, 2014

Dam Structure Options Selected for further Evaluation

Flood Retention RCC* Dam (FR-RCC)
Multipurpose RCC Dam (MP-RCC)
Multi-purpose Rockfill Dam (MP-Rockfill)

*Roller Compacted Concrete (RCC)

Dam Alternatives Overview

Basis of Design – Key Assumptions

Flood Retention Only Crest Elevation: 654 Multipurpose Crest Elevation: 714

Flood Retention Only Reservoir

- Dam Height = 227'
- Spillway Crest Elev. = 628
- Dam Crest Elev. = 654
- Area = 860 Acres
- River Inundation Length = 6.8 mi

Flood Retention Only RCC Dam

Footprint = 6 acres

Multi-purpose Reservoir Overview

- Dam Height = 287'
- Spillway Crest Elev. = 687
- Dam Crest Elev. = 714
- Area = 1,307 Ac
- River Inundation Length = 7.5 mi

Multi-purpose RCC Dam

Material Sources Study

• Determine location(s) of suitable dam materials

- RCC concrete aggregate
- Rockfill dam fill and filter sand and gravel
- Determine available materials qualities

Potential Sites Investigation

- DNR permitted and active quarries
- WSDOT-owned pit information
- Other local quarries
- WSDOT's Aggregate Source Approval (ASA) reports

Fish Passage Options

Flood Retention Only Dam Fish Passage – Fish Passage Tunnels

STATION ALONG AXIS (UPSTREAM FACE) OF DAM (LOOKING DOWNSTREAM) (FEET)

Flood Retention Only Dam Fish Passage Option – Fish Passage Tunnel

- Upstream and Downstream: Fish Passage Tunnel
- 9 9 x 12 x 200 ft long fish passage tunnels
- Multiple inverts to accommodate a range of inflows and water surface elevations
- Accommodates 2 ft/s velocity up to 2,000 cfs (more when the alternative flood control bypass is used)
- Gates shut off flow to tunnels when the facility is used to retain flood flows

Multi-Purpose Dam Fish Passage Options -CHTR

Multi-Purpose Dam Fish Passage Options – Conventional Fishway with Experimental Exit Tower

- Guidance to fishway entrance
- 2,300 ft long fishway
- 148 ft total height
- 0.9 ft head drop per pool
- 80 ft tall spiral exit tower
- 80 automated hydraulic control gates

Multi-Purpose Dam Fish Passage Options – Conventional Fishway

- Guidance to fishway entrance
- 3,000 ft long fishway
- 198 ft total height
- 0.9 ft head drop per pool
- 30 ft tall exit structure
- 30 automated
 hydraulic control
 gates

Multi-Purpose Dam Fish Passage Options – Head of Reservoir Combination Collection Facilities

- Downstream 1: Head of Reservoir Floating Collector and Fixed In-Stream Collection Facility
- Small portable floating collector at head of reservoir
- Fixed collection facility on main stem
- The combination of collection facilities accommodates a wider range of species over a wider flow regime
- Access and road improvements

Multi-Purpose Dam Fish Passage Options – Head of Reservoir Combination

Multi-Purpose Dam Fish Passage Options – Forebay Collector

- Downstream 2: Floating Forebay Collector
- Floating platform connected to guide rails on intake tower
- Capable of accommodating 80 to 100 feet of forebay fluctuation
- Fish guidance system
- Primary gravity flow system with pumped auxiliary flow
- CHTR method for fish transfer
- Access and road improvements

Multi-Purpose Dam Alternative Fish Passage Options – Forebay Collector

Operations of Dam

Operational Considerations

- Provide flood reduction in downstream areas
- Preserve geomorphic processes downstream
- Maintain slope stability in reservoir
- Keep rate of change in flows downstream within accepted limits to minimize fish stranding
- Store water during winter and release during summer for fisheries and water quality enhancement (Multi-purpose Alternative)

Proposed Operating Rules – Flood Retention Only

- Available flood storage capacity = 65,000 acre-feet
- Operate the facility without impounding water except during a potentially damaging flood
- Begin storing when Grand Mound flows are predicted to be above the "Major Flood" (38,800 cfs) within 48 hours
- Reduce reservoir outflow at a rate of 200 cfs/hr until reaching 300 cfs
- Two days after dropping below flood stage, increase outflow at a rate of 1,000 cfs per hour, but less than 30 feet per day
- Drawdown rate may be reduced to allow for debris removal

Reservoir Inflow/Outflow during Large Flood – 100-Year Flood

Reservoir Inflow/Outflow during 2007 Event

Operating Rules – Multi-purpose

 The Multi-Purpose facility would have a conservation pool of 65,000 acre-feet and a flood storage pool also with 65,000 acre-foot capacity. The conservation pool would be utilized to provide instream flows during period of low flow (typically summer). The flood storage pool would capture high flows to reduce downstream flooding.

Operating Rules – Multi-purpose

- Instream Flows
 - Minimum releases for instream flows are proposed

TIME PERIOD	FLOW
Jan-Feb	290 cfs
Mar-Jun 15	250 cfs
Jun 16-Aug 15	190 cfs
Aug 16-Dec 15	160 cfs
Dec 16-31	290 cfs

 During drought years, reservoir releases are reduced by 20% to prevent the reservoir from completely running out

Downstream Flood Reduction

Drop in Water Surface Elevation (in feet) - With Dam versus Baseline

FLOOD EVENT	NEWAUKUM CONFLUENCE	CHEHALIS- CENTRALIA AIRPORT	MELLEN STREET	SKOOKUM- CHUCK CONFLUENCE	BLACK RIVER CONFLUENCE	WYNOOCHEE CONFLUENCE
100-year	1.2	1.5	1.5	1.4	0.9	0.7
10-year	1.4	1.6	2.2	1.7	0.5	0.3
1996	0.9	1.4	1.3	1.3	0.8	0.1
2007	1.3	2.1	2.0	2.2	1.8	1.1
2009	1.3	1.7	1.5	1.2	1.1	0.1

Downstream Flood Reduction

FLOOD EVENT	EXISTING PEAK FLOW (CFS) ¹	ESTIMATED RECURRENCE INTERVAL (YEARS)	PEAK FLOW WITH FLOOD RETENTION DAM (CFS)	ESTIMATED RECURRENCE INTERVAL (YEARS)	DIFFERENCE IN FLOW (%)
100-year	74,800	100	61,100	40	-18.3%
10-year	41,500	10	35,600	5	-14.2%
1996	72,100	90	61,200	40	-15.1%
2007	79,800	140	59,300	40	-25.7%
2009	57,300	35	48,600	15	-15.2%

¹ This table shows simulated flows from the HEC-RAS model – these may differ from USGS observed flows

Frequency of Reservoir Usage – Flood Retention Only Structure

WATER YEAR (OCT 1 – SEPT 30)	NUMBER OF TIMES UTILIZED	NUMBER OF DAYS UTILIZED	PEAK RESERVOIR STAGE (FT)
1990	2	23	578.9
1991	2	23	569.1
1996	2	14	600.7
1997	1	1	467.9
2008	1	13	620.7
2009	1	13	584.3
Total (1989 – 2012)	9	87 (10 days on average or 1% of the time)	

Structures Affected

Baseline conditions versus with dam conditions

Summary of Structures At Risk of Flooding in Chehalis River Floodplain							
	Baseline			With Dam and Airport Levee			
Number of Structures	Dec 07	500-Year	100-Year	Dec 07	500-Year	100-Year	
Flooded	2040	3645	1384	753	2031	821	
>1.0 feet	1368	2743	829	432	1306	459	
>2.0 feet	820	1926	489	241	762	241	
>3.0 feet	470	1159	293	139	471	117	
>4.0 feet	263	657	155	65	300	54	
>5.0 feet	159	385	76	28	158	25	
Assessed Value of Improvements Inundated (\$Million)	\$238	\$411	\$137	\$64	\$206	\$73	

Structures Affected

Baseline versus various flood reduction alternatives

Summary of Structures At Risk of Flooding in Chehalis River Floodplain							
	Baseline	With Dam and Airport Levee	With WSDOT Alt 1	With Dam and WSDOT Alt 1			
Number of Structures –	100-Year	100-Year	100-Year	100-Year			
Flooded	1384	821	1295	778			
>1.0 feet	829	459	781	428			
>2.0 feet	489	241	446	233			
>3.0 feet	293	117	257	113			
>4.0 feet	155	54	129	53			
>5.0 feet	76	25	54	26			
Assessed Value of							
Improvements	\$137	\$73	\$112	\$64			
Inundated (\$Million)							

Structures Affected

Climate Change Scenario – 18% Increase in Flow

Summary of Struct	Summary of Structures At Risk of Flooding in Chehalis River Floodplain						
Number of Structures —	Baseline	100-Year w C	limate Change				
Number of Structures	100-Year	100-Year	Change vs Base				
Flooded	1384	2202	59%				
>1.0 feet	829	1462	76%				
>2.0 feet	489	830	70%				
>3.0 feet	293	481	64%				
>4.0 feet	155	301	94%				
>5.0 feet	76	161	112%				
Assessed Value of Improvements Inundated (\$Million)	\$137	\$255	86%				

Summary of Operations

Used 1 percent of time based on historic record
Reduces flows by @15% for 10-100 year
100 year to 40 year event, 2 feet lower in Centralia

	100 Year	With Dam	Difference	Climate
Floodplain Structures	1384	821	563	2202
Value of Structures (\$Mil)	\$137	\$73	\$64	\$255

• Multi-purpose increases summer low flows by factor of 3-6.

Highway Flooding Interstate 5, SR 6, US 12

Interstate 5

- Flooded up to 5 days in 100-year event, maximum depth +10 feet
- Flooded less than 1 day with dam/airport levee, maximum depth 1 foot
- Remaining flooding in 100-year event along Dillenbaugh Creek

Highway 6

- Flooded up to 14 hours at a 10-year recurrence level
- With dam, flooding reduced to 10 hours at a 20-year recurrence

Highway 12

- Flooded by Chehalis backwater, one to seven days in 100-year event
- With dam flood levels reduced by 0.75 feet, duration of flooding reduced

Hydropower

Multi-purpose Dam Potential Future Hydropower Benefits

Located below the dam site
Future connection to dam outlet works
One or two turbines – 5 MW capacity
Produce an average of 24,000 MWh/Year

Costs of Water Retention Structures

Water Retention Cost Comparison (Mitigation costs not included)

Alternative	Preliminary Class 5 Cost Estimate 2014 \$M, Average Estimated Value and +/- Range					
	Dam	Fish Passage Upstream	Fish Passage Downstream	Hydropower	Total Range	
Flood Only	265-421				265-421	
Multi Purpose with Fish passage	322-512	10-18	17-30	20-25	369-585	
Rock Fill Multi Purpose	408-566	40-70	27-47	20-25	495-708	

Note: These costs are preliminary Class 5 estimates for screening purposes only. They should not be used for budgetary purposes

Slope Stability and Vegetation and Debris Management

Reservoir Slope Stability

- Watershed GeoDynamics: Geomorphology study, estimates of sediment delivery to river from landslides
- Shannon & Wilson: Characterization of large landslides

Mud Mountain Dam – Vegetation Mgt

Mud Mountain Dam – Vegetation Mgt

- Initially logged; little vegetation management
- Vegetation and trees not cut or removed
- Log storage areas are cleared
- During flood LWD (from upstream sources) can be backed up for miles
- Floating booms to collect LWD
- Let LWD pass through outlet if possible
- 18 inch opening on bar rack

Mud Mountain Dam – Debris Mgt

Log boom

5/21/2014

Mud Mountain Dam – Debris Mgt

- Lowering pool may be delayed following flood events that deliver large amounts of LWD
- LWD is made available to various stakeholders
- Excess LWD temporarily stored in reservoir
- Use boats to gather and haul LWD to storage areas
- USACE developing management plan to address LWD management, including disposal

Mud Mountain Dam – Sediment Mgt

Mud Mountain Dam – Sediment Mgt

- Soil, gravel, cobbles, and boulders flushed through low elevation tunnel through dam
- Recently, USACE passing additional flow through higher tunnel to facilitate downstream fish passage
- Material carried through tunnel damages steel liner

Howard Hanson Dam

Multi-purpose dam

- Flood
- Summer stream augmentation
- Ecosystem restoration
- Drinking Water (City of Tacoma)

• Pool increase starting Feb., maintained in summer

Never overtopped spillway

Howard Hanson Dam

5/21/2014

Howard Hanson Dam – Vegetation and Debris Mgt

- Vegetation and trees not cut or removed
- LWD cannot pass through the dam
- Floating booms to collect LWD
- Booms anchored at multiple elevations
- Use boats to gather and haul LWD to storage areas
- 50% LWD reintroduced to river downstream
- Other LWD is available to various stakeholders
- Excess LWD stored in reservoir to decompose

Aquatic Species Impacts

Geomorphology Considerations

• Project operation could affect:

- Peak flows (sediment transport)
- Sediment input (reservoir storage, change in bank erosion)
- Large woody debris input/transport
- Potential Key Geomorphology/Habitat Effects
 - Substrate (spawning gravel, interstitial rearing, etc.)
 - Channel forming processes (meander rate, LWD input, holding pools, etc.)
 - Floodplain and off-channel connectivity

Reach 1 – Reservoir

Variable	Flood Retention Only	Multi-Purpose
Substrate/Spawning Gravel	Finer substrate/ transient delta – assumed 50% of spawning habitat lost	Inundated – 100% of spawning habitat lost
Channel Width/Depth	Likely wider/ shallower wetted channel	Inundated
Large Woody Debris	Wood trapped – transported around dam	Wood trapped – transported around dam
Channel Migration	n/a - confined	n/a - confined

Confined Reaches – 2A, 2C, 4A, 4C

Variable	Flood Retention Only	Multi-Purpose
Substrate/Spawning Gravel	Minor changes	Erosion/ coarsening
Channel Width/Depth	Minor changes	Possible narrower channel
Large Woody Debris	Likely less LWD	Likely less LWD
Channel Migration	n/a - confined	n/a - confined

Unconfined Reaches – 2B, 3, 4B

Variable	Flood Retention Only	Multi-Purpose
Substrate/Spawning Gravel	2B - Continued aggradation/fining 3 - Minor changes 4B – Possible coarsening	Erosion/ coarsening
Channel Width/Depth	Minor changes	Possible narrower channel
Large Woody Debris	Likely less LWD	Likely less LWD
Channel Migration	Likely less channel migration	Likely less channel migration

Reaches 5, 6 – Downstream of RM 75

- Limited changes bedrock control re-sets bedload transport
- Tributary input of water/wood sediment mute effects of flood control facilities

Spawning Habitat in Reservoir Assumptions - FRO

- 18 out of 23 years studied the FRO reservoir does not impound water
- Average length of reservoir inundated = 1.4 miles (22% of total length). Other areas will be impacted by sediment deposition
- For fish impacts, assumed spawning habitat in 50% of reservoir length lost (FRO50)
- A sensitivity run assuming 100% of spawning habitat lost was also run (FRO100)

Species

- 22 key species evaluated using variety of models in 3 categories
 - Salmon (EDT and Shiraz)
 - Spring Chinook, Fall Chinook, Coho and Winter Steelhead
 - Other fish (11)
 - Non-fish (7)

Modeling Approach - Salmon

- Models are similar (habitat based models) but they are different tools
- Used to assess trends and make relative comparisons
- EDT
 - Entire basin and 4 species or runs
 - Population effects of a change (a point estimate)
- Shiraz
 - Mainstem only and 3 species or runs
 - Projects change to population into future (year 2100)(variability around a mean)

Effects on Spring Chinook

Effects on Spring Chinook

- Upper Chehalis River stocks impacted the most
- Effects of Multi-purpose > Flood Retention only
 - Loss of spawning/rearing habitat under reservoir footprint
 - No real benefit to spring Chinook salmon associated with rearing in Multi-purpose reservoir because they migrate downstream
- Some populations benefit from Multi-purpose below the dam
 - Due to multiple effects (temperature, reduced fine sediments)

Effects on Coho Salmon

Effects on Coho Salmon

Upper Chehalis River stocks impacted the most

- Effects of Flood Retention only > Multi-purpose
 - Loss of spawning rearing habitat under reservoir footprint
 - Large benefit to coho salmon associated with rearing in reservoir (based on Cowlitz Falls observations)

 Little benefit from Multi-purpose dam below the dam because coho are spawning later (compared to spring Chinook), so not as much temperature benefit

Effects on Winter Steelhead

Effects on Winter steelhead

- Upper Chehalis River stocks impacted the most
- Effects of Multi-purpose > Flood Retention
 - Loss of spawning rearing habitat under reservoir footprint
- No steelhead rearing in reservoir (based on Cowlitz Falls observations)
- Little benefit from Multi-purpose below the dam because winter steelhead spawn during winter, so no temperature benefit from dam

Effects on Fall Chinook

Effects on Fall Chinook

- Few fish in Upper Chehalis River
- Relatively small changes due to dams
- No real benefit to fall Chinook salmon associated with rearing in Multi-purpose reservoir because they outmigrate
- Little benefit from Multi-purpose dam below the dam because fall Chinook are spawning later (compared to spring Chinook), so not as much temperature benefit
- Lower Chehalis mainstem populations impacted from changes in flow, channel width

Summary at Basin Scale - EDT

Summary at Basin Scale - EDT

Species	Current	Multi-purpose	Flood Retention 100%	Flood Retention 50%
Coho salmon		-2%	-3%	-2%
Fall Chinook		-3%	-3%	-3%
Spring Chinook		-2%	-12%	-10%
Winter Steelhead		-8%	-6%	-3%

Shiraz - Spring Chinook Calibrated Model 2014

- Updated information on many model inputs, including:
 - Juvenile fish rearing distribution in basin
 - Age of return
 - Updated flow and temperature information used in habitat capacity and habitat quality inputs
- Required adjusting the 2012 model calibration
- 2014 model calibration period ends with higher number of fish as the starting point for simulation
- During simulation, population trend was generally flat

Summary

- Both flood retention structures would impact salmon and steelhead populations
- Shiraz (mainstem) results consistent with EDT
- Potential effects on other fish and non-fish species can only be described qualitatively at this point
 - Dams will effect floodplain connectivity, especially closer to dam

Using the Results for Economic Analysis

Summary of Key Results for Economic Analysis

- Operating rules for different options
- Benefits for reducing flood damage
- Change in 100 year flood based on climate change
- Effects on vegetation and habitat in the reservoir
- Effects on downstream geomorphology
- Potential impacts and benefits to salmon
- Impacts on other aquatic species

Questions

