# Chehalis Basin Strategy: Reducing Flood Damage and Enhancing Aquatic Species

Aquatic Species Enhancement Plan

Policy Work Group Meeting Chehalis, Washington May 22, 2014



## ASEP – Talk Outline

• Background information and biological context

#### • Habitat

- Limiting factors
- Enhancement actions
- Climate change

# Background Information and Biological Context



#### Species

- 22 key species evaluated using variety of models in 3 categories
  - Salmon (EDT and Shiraz)
    - Spring Chinook, Fall Chinook, Coho and Winter Steelhead
  - Other fish (11)
  - Non-fish (7)

#### Salmon – Current



# Salmon – Habitat Potential (EDT)

| Species                  | Current | Intrinsic | Habitat<br>Impairment |
|--------------------------|---------|-----------|-----------------------|
| Spring Chinook<br>Salmon | 3,349   | 15,287    | 78%                   |
| Fall Chinook<br>Salmon   | 25,459  | 46,052    | 45%                   |
| Coho Salmon              | 24,144  | 78,986    | 69%                   |
| Winter-run<br>Steelhead  | 4,557   | 8,102     | 44%                   |

#### **Other Fish and Non Fish**













#### **Oregon Spotted Frog**





# Background Information – Other Fish Species

- Historical and current population information very limited in Basin
- Olympic mudminnow unique; center of distribution is Chehalis Basin
- Chum salmon the exception; geo mean of total run size since 2003 = 25,116 fish (no clear trend)

# Background Information – Non-fish Species

- Historical and current population information very limited in Basin
- Highest species richness of amphibians in Washington State; also highest at risk in the state
- Potential Oregon spotted frog ESA listing
- Most extensive floodplain off-channel habitats in Washington State; occupied by seven species of stillwater-breeding amphibians

#### Native Amphibian Species Richness



# Habitat Limiting Factors



#### Methods - Salmon

#### Ecosystem Diagnosis & Treatment Model (2014)

• Modeled the habitat used by salmonids within the Chehalis Basin (current condition compared to intrinsic condition)

#### Smith and Wenger (2001)

- Habitat factors limiting salmonid abundance and production within the Chehalis Basin
- Input and reviews by technical team member experts and local experts

#### Limiting Factors Based on EDT – Spring Chinook



#### Limiting Factors Based on EDT – Winter Steelhead



### Limiting Factors Based on EDT - Coho



#### Limiting Factors Based on EDT – Fall Chinook



#### **Limiting Factors**

#### Most prevalent are

- Barriers
- Riparian degradation
- Water quantity and quality (flows and temperature)
- Sedimentation
- Channel complexity and stability (lack of wood)
- Loss of floodplain habitat/connectivity

#### **Limiting Factors - Other Fish**

- Limited available information for these species in the Chehalis Basin
- Limiting factors are based on known limiting factors for species, but not specifically known to be limiting in the basin
- Available information and best professional judgment was used

## Limiting Factors Other Fish - Summary

- Silt free substrate is important to many of these species
- Non-native predators are likely negatively impacting many of these species
- Floodplain connectivity is important to many of these species
- During summer:
  - Flows are more limiting in the upper basin than the lower basin for many species
  - Low flows during summer months appears to be a limiting factor for many species

#### Limiting Factors - Non-fish

- Similar to Other Fish, very limited information on limiting factors in the Chehalis Basin
- Many limiting factors are based on known limiting factors for species and not known to be limiting in the basin
- Available information and best professional judgment was used

#### Limiting Factors Non-fish - Summary

- Presence of exotic aquatic predators is probably limiting to all key amphibian species and the turtle
- Suitable combination of aquatic and riparian habitats are likely limiting for
  - Northern red-legged frog, western toad and the turtle
  - The type of riparian habitat and width required varies with species
- Later stage coniferous forest that produce large wood may be limiting for
  - Coastal tail frog and Van Dyke's salamander

 Information on distribution and abundance of all non-fish taxa remains a major gap that needs to be addressed to better direct options

## Habitat Enhancement



### **Actions to Address Limiting Factors**

- Focus was on salmon due to lack of information for other species
- Actions identified in 3-day workshop and follow up 2day workshop with WDFW
- Effects of enhancement is on all species, with a focus on spring Chinook due to low abundance
- Identified 3 scenarios that were modeled using EDT
- Qualitatively assessed effects of salmon actions on Other Fish and Non-Fish









#### **Enhancement Scenarios Modeled**

- Remove/improve barriers to fish passage (culverts) benefit to coho, steelhead and fall Chinook (not spring Chinook)
- 2. Riparian enhancement in managed forests all stocks
- Riparian enhancement to restore 50% of Spring Chinook spawning reaches outside of managed forests, combined with restoring large wood attribute by 50% in same reaches; includes mainstem – all stocks

## 1. Obstructions







#### **Preliminary Restoration Cost Estimates**

Barrier removal (172 culverts):
 Range in costs from \$26M to \$50M

## 2. Riparian -Managed Forests

#### Extent of managed forest in Chehalis Basin





#### **Preliminary Restoration Cost Estimates**

2. Riparian enhancement in managed forests
Costs are born by public and private timber land owners

# 3. Riparian and Wood for 50% Spring Chinook Spawning Habitats





#### **Preliminary Cost Estimates**

 3. Riparian enhancement and wood in 50% of Spring Chinook spawning reaches

Riparian: \$24M to \$59M
Wood treatment: \$13M to \$25M

• Total for scenario: \$37M to \$84M

# **Summary of Riparian Restoration**

|                     | Managed Forest Lands        |                             | Non-Managed Forest Lands |                             |                             |
|---------------------|-----------------------------|-----------------------------|--------------------------|-----------------------------|-----------------------------|
| Species             | 20% Riparian<br>Enhancement | 60% Riparian<br>Enhancement | Wood<br>Enhancement      | 20% Riparian<br>Enhancement | 60% Riparian<br>Enhancement |
| Coho salmon         | 11%                         | 22%                         | 8%                       | 9%                          | 20%                         |
| Fall Chinook        | 6%                          | 9%                          | 2%                       | 4%                          | 9%                          |
| Spring Chinook      | 15%                         | 26%                         | 14%                      | 26%                         | 62%                         |
| Winter<br>Steelhead | 8%                          | 15%                         | 3%                       | 4%                          | 9%                          |

#### **Other Fish - Habitat Enhancement**

Salmon projects would likely be positive to neutral

- Silt reduction
- In channel habitat complexity
- Habitat complexity including off-channel connection
- Removal of non-native predators would likely be beneficial
- Due to the lack of data, specifics on project designs and locations should be reviewed on a case-by-case basis to determine potential impacts by species

#### Non-Fish - Habitat Enhancement

 Removal of aquatic exotic predators and/or habitat modification to disfavor aquatic exotic predators can help several non-fish species

Account for complex life stage requirements

 Preservation of riparian areas located near and suitable to the upland needs of several species will help Western toad, Northern Red-legged Frog, and Western Pond Turtle

 Setting aside coniferous forest to generate older stage stands will help Coastal tailed Frog and Van Dyke's salamander

## Climate Change



#### **ASEP Climate Change**

Addressed 2 key questions:

- How would climate change affect species compared to the continuation of existing conditions? (quantitatively)
- How should we view (select) habitat restoration scenarios when taking climate change into consideration? (qualitatively)

### 2014 Climate Change Estimates

- Significant uncertainty in scientific community about the magnitude of projected changes, particularly with river flows
- Used best available information from UW Climate Impacts Group
- Used 2040s model inputs based on an intermediate gas emissions scenario

# ASEP Climate Change Analysis Based on Moderate Scenarios (IPCC - A1B)

#### • Water temperature

- Climate Impacts Group's changes in air temperature
- 1 to 3°C increase

#### Streamflow

- Average monthly flow (wetter winters, drier summers)
- Higher peak flows
- Lower low flows

 Sea level rise effects on estuary and lower river (23" increase by 2100; Wild Fish Conservancy)

#### Climate Change – Salmon

• To date have modeled climate change using Shiraz

- Mainstem only
- Spring Chinook, Winter steelhead, Coho
- Adjusted habitat capacities based on estimated changes in streamflows
- Adjusted environmental conditions (water temperature and flows)

#### Shiraz - Results for Climate Change (mainstem Chehalis River)

| Species          | Climate Change |  |
|------------------|----------------|--|
| Spring Chinook   | -100%          |  |
| Coho             | -5%            |  |
| Winter Steelhead | -62%           |  |

 Percentages are changes in medians of last 10 years in time series (2091-2100), compared to current conditions

# Climate Change – Other fish and Nonfish Species

- Responses were highly variable
- Depended on species' thermal preferences (adaptations), life stage, location (reach)
- In general
  - Warm-adapted species benefit from climate change and are impacted by cold water releases from multi-purpose dam
  - Cool-adapted species impacted by climate change and benefit from releases from multi-purpose dam

# Climate – Positive Habitat Restoration Actions

- Barrier removal: can aid access to cooler streams
- Floodplain reconnection: can ameliorate temperature increases by sub-surface flow
- Aggrading incised channels: restores aquifer storage, increases summer base flow, lowers summer temperatures, increases habitat diversity
- Actions that restore stream flow: ameliorate low flows and increase diversity

#### Climate – Positive Restoration Actions

- Restoring riparian habitat: cools streams, provides organic matter, increases wood supply and habitat diversity, and reduces fine sediments
- Reducing erosion and sediment delivery: improves habitat diversity, increases pool depth, narrows widened channels
- Instream rehabilitation: improves habitat diversity, provides cover, improves sediment storage

# Summary of Key Results for Economic Analysis

- Effects of managed forest riparian buffers
- Climate change
- Species to focus on
- Level of effort and cost for benefit of enhancement

## Summary

| Scenario                                | Cost Range<br>(\$ M) | Spring<br>Chinook | Coho     | Fall Chinook | Winter<br>steelhead |
|-----------------------------------------|----------------------|-------------------|----------|--------------|---------------------|
| 1. Culverts                             | 26 - 50              | 0%                | 12%      | 3%           | 24%                 |
| <ol> <li>Managed<br/>forests</li> </ol> | -                    | 15 – 26%          | 11 – 22% | 6 – 9%       | 8 – 15%             |
| 3. Non-<br>managed<br>forests           | 37 - 84              | 40 – 76%          | 17 – 28% | 6 – 11%      | 7 – 12%             |
|                                         |                      |                   |          |              |                     |
| Total                                   | 63 – 134             | 55 – 102%         | 40-62%   | 15 – 23%     | 39 – 51%            |

## Questions

