Chehalis Basin Strategy: Reducing Flood Damage and Enhancing Aquatic Species

Comparison of Alternatives: Methodology Selection Overview & Status

Agenda

Overview of Comparison of Alternatives Timeline

- Past studies and how this is different
- Methodology Selection Overview & Current Recommendations

Analysis of Alternatives Project Timeline

Methodology Selection

- > Deliverables: Technical Memo December, 2013
- > Work Group Approve Methodology December, 2013

Evaluation of Components

- Determination of impacts to include
- Research valuation standards database
- Consult with technical teams
- Schedule January 2014 April 2014

Comparison of Alternatives

- > Build model based on methodology selected
- Consult with technical teams
- > Perform base analysis
- > Perform risk & uncertainty analysis
- Develop qualitative analysis
- Need to Complete Draft Report by June, 2014
- Finalize Report by August, 2013

Past Studies vs. Current Study

	2007 Analysis - \$938M	2B Study	CBFS & ASEP
Analysis Period	1 event - Historical	Probability - Future	Probability - Future
Floods evaluated	2007	10, 50, 100 & 500	10, 20, 100 & 500
			National, State, Basin
Perspective	State	National, Lewis County	Wide
			Flood Retention, ASEP,
Alternative Evaluated	None	Flood Retention	Small Projects, WSDOT
Flood Damage	Yes, 3 counties	Yes, Lewis County	Yes, 3 counties
Storm Damage	Yes, 3 counties	No	No
Environmental Impact	None	Minimal	Yes
			Yes, National, State &
Transportation Impacts	Yes, State	Yes, State avoided costs	Basin Wide
Building/Inventory damage	As Reported	Depreciated, Lewis County	Depreciated, 3 counties
Agricultural Losses	Yes, 3 counties	Yes, Lewis County	Yes, 3 counties
Emergency Aid	Yes, 3 counties	Yes, Lewis County	Yes, 3 counties
			Yes, National, State &
Business Impacts	Yes - State	Yes - Lewis County	Basin Wide
Economic benefit of construction	Yes	No	No
Government Revenue Loss	Yes	No	Yes, State & Basin Wide
Economic Impact	Yes - State	Yes, Lewis County	Yes, State & Basin Wide
Risk Profile	No	Minimal	Yes
Qualitative Impacts	Some	Some	Yes

This Study

Throughout Address What We are Doing Different

- Including WSDOT and Small Projects Alternatives
- Incorporate Aquatic Species Enhancement Plan
- Incorporating environmental impacts based on studies underway
- Incorporating uncertainty measures including ranges and probability distributions where available
- Incorporating qualitative evaluation in addition to quantitative evaluation
- > Allowing for information to be presented based on requirements from funding sources and decision makers
- The analysis will be transparent with source data and calculation available and explainable

Initial Factors to be Evaluated

- Commercial fisheries for salmon and steelhead
- Recreational fisheries for salmon and steelhead
- Ferrestrial and non-fish aquatic habitat species
- Other fish species (non-salmonids)
- Other environmental benefits such as carbon sequestration and resiliency to climate change
- > Building structures, contents and equipment
- > Agriculture
- Clean-up costs
- > Transportation
- Local employment and business income
- > Net value of hydropower and its renewable qualities

Recommended Methodology for Evaluating Flood Alternatives

Methodology Selection

1) Which Alternatives Do We Model?

- Flood retention facility only
- Multi-purpose flood retention facility (with possible hydro)
- WSDOT alternative
- Suite of Small Projects
- > Aquatic Species Enhancement Plan
- How Do We Incorporate Suite of Small Projects/ASEP?
- Recommendation
 - If project does not affect the impact analysis of the retention facilities or WSDOT Alternative – add costs and impacts after the fact
 - If project does affect the impact analysis of the retention facilities or WSDOT Alternative, the analysis should explicitly ensure that no double counting of impacts occurs

2) Analysis Perspective

- Whose costs and benefits are being assessed?
 - > Why is this important?
 - > How does it impact analysis?
- Recommend 3 Perspectives:
 - > National/Federal
 - State/Regional
 - Basin Wide

3) Cost of Alternative – Developed by Other Technical Groups

- Costs
 - Include capital investments
 - Include operating costs
 - > Include maintenance costs
 - Include permitting costs
- Recommendation Costs developed for 50 years (analysis horizon) in today's dollars

4) Analyze Incremental Effects of the Alternative

- Need to Develop Baseline for Comparison
 - > Options
 - Forecast of future changes if no alternative is selected
 - Status quo current situation with no changes
 - Current status with known and measurable changes
- Recommendation Current status but include currently funded and approved projects
- Obtain impacts from studies and analysis

5) Gather Data About Value of Impacts

- Keep impact results disaggregated for input into overall BCA framework
- WSDOT will provide analysis of value of the impact of transportation changes
- Environmental Impact analysis framework matched up with output framework developed by the ASEP group
 - Quantitative outputs used to monetized ecosystem benefits
 - Qualitative outputs used in a cost-effectiveness analysis (nomonetization of impacts)
- State & Basin Wide perspectives will include
 - Business losses
 - Income effect

6) Deterministic Model Development

Net Benefit = Benefits – Costs

> Will be developed for each alternative for each perspective

- Possible to group benefits and costs in different manner
- Recommendation Results will be presented on a Net Present Value (NPV) basis summarizing 50 years of net benefits in today's dollar; impacts will be disaggregated for each alternative so decision makers can understand the contribution to overall net benefits from each impact

7) Risk/Uncertainty Evaluation

- Risk or uncertainty associated with each variables will be included based on available data
- Recommendation Use probability distributions where data is available and use deterministic analysis (high/medium/low) and ranges where data is not available to understand the probability distribution

8) Incorporate Qualitative Analysis

- Not all impacts can be measured quantitative, i.e., be assigned a dollar value
- Methodology for incorporating qualitative analysis depends on how important the impact is – would it alter the decision?
- Recommendation Provide description of qualitative measures and impact; the methodology will provide information on both qualitative and quantitative impacts separately, so the decision makers can apply their own weighting to the information

Yakima Basin Integrated Water Resource Management Plan

- Basin size: 6,155 sq. miles
- Irrigated cropland: 500,000 acres
- Food processing industry: \$1.4 billion
- Agricultural production: \$1.8 billion

Valdana Révar Christie Lascadere

Yakima Basin Integrated Water Resource Management Plan (Cont'd)

- Reservoir Fish Passage
- Habitat/Watershed Protection
- Surface storage
- Enhanced conservation
- Groundwater storage
- Market Reallocation
- Structural & Operational Changes

BUILDING A FUTURE FOR WATER, WILDLIFE AND WORKING LANDS

(1.1)

Yakima Basin Integrated Water Resource Management Plan (Cont'd)

Questions/Comments

