
Chehalis Basin Strategy

Policy Workshop Small Projects and Floodproofing May 23, 2014

Purpose

- Identify small scale projects to consider for reducing flood damage in the Chehalis Basin. The list of projects identified will serve two purposes:
 - Provide flood damage reduction as an alternative to or in combination with large projects (Dam, I-5 Alternative)
 - Provide a list of recommendations to the legislature for funding as part of the 2015-17 Capital Budget

Process

- Identified a long list of projects through review of past reports and meetings with communities
- Developed criteria to prioritize projects
- Prepared a short list of 37 projects most likely to meet criteria
- Consultant team evaluated projects using criteria
- Project Committee reviewed evaluation, agreed with final list of 11 projects for additional design analysis now
- Floodproofing is also being evaluated in this task

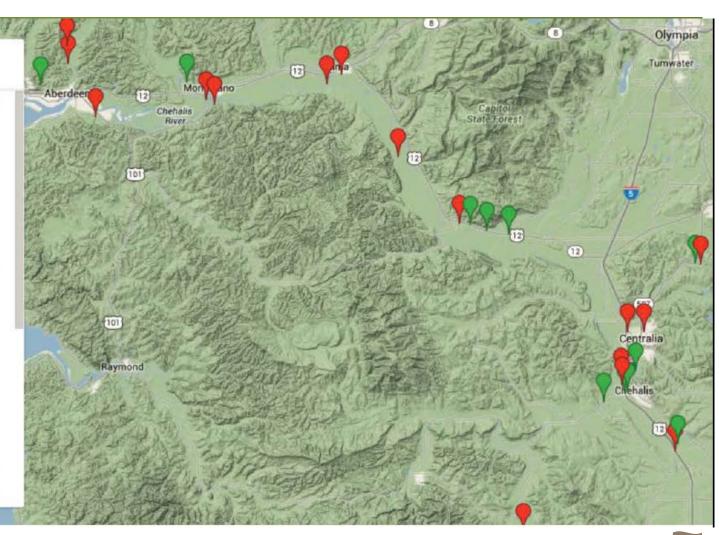
Criteria Used

• Primary

- Ability to affect a broader area of the mainstem Chehalis River
- Estimated flood damage reduction benefits
- Size of human population at risk
- Secondary
 - Ability to permit and implement the project
 - The need and complexity the project will have for continued costs (O&M)
 - Ability to provide environmental benefits
 - Adaptability to provide benefits under climate change and in combination with other projects

Projects Selected for Additional Analysis Now

- City of Napavine, Kirkland Road Flooding
- WSDOT/Lewis County, SR 6 Overflow
- City of Chehalis, Dillenbaugh Creek Realignment
- City of Chehalis, Main Street Regrade
- Lewis County, Salzer Creek
- Town of Bucoda, Main Street Regrade
- Chehalis Tribe, Black River Bridge
- Chehalis Tribe, Roundtree Creek
- Grays Harbor County, Wynoochee Valley Road Regrade
- City of Aberdeen, Fry Creek
- Floodproofing all structures in floodplain


Project Locations

Local Small Projects

Small Projects (Current and Poten... 🗹

- P Boistfort Water District, Wildwood
- Y City of Aberdeen, Fry Creek
- 📍 City of Centralia, China Creek
- 📍 Lewis County, Salzer Creek
- 📍 City of Centralia, Skookumchuck R
- 📍 City of Chehalis, Airport Levee Pha:
- Y City of Chehalis, Dillenbaugh Creek
- 📍 City of Chehalis, Main Street Regra
- 📍 City of Chehalis, Potential Storage
- 📍 City of Cosmopolis, Mill Creek
- Y City of Elma, Wastewater Treatme
- City of Montesano, WWTP Lagoon/
- P City of Napavine, Kirkland Road Flc
- 📍 City of Napavine, Newaukum River
- 📍 City of Oakville, Subdivision Floodii
- Confederated Tribes of the Chehali
- Confederated Tribes of the Chehali

gle Maps Engine muserery

Floodproofing - Structure Survey Results

9,087 Structures Evaluated

Type of Structure	Lewis County	Thurston County	Grays Harbor County	Totals
Mobile Homes	363	98	0	461
Residential Structures	5,348	201	405	5,954
Commercial	1,567	34	470	2,071
Agricultural	10	161	430	601
Totals	7,288	494	1,305	9,087

5,512 "of significant value" structures; 3,575 others not assigned a value

Total Assessed Value \$607 Million of the 5,512 structures

Estimated Costs for Floodproofing

Residential Structures

- \$35 per square foot of floor area (roof area)
- 20% contingency for escalation, contractor profit, etc.

Commercial Structures

- \$33 per lineal foot of perimeter
- \$4.67 per square foot of wall area (to 3 feet above flood)
- \$10,000 for other costs (backflow prevention, permits, etc)
- 50% contingency for escalation, contractor profit, etc.

Agricultural Structures

Greater of either residential or commercial floodproofing costs

Floodproofing costs capped at value of structure plus land

Estimated Costs for Floodproofing

Baseline conditions 100-year event totals

Residential Structures - \$57,000,000 Commercial Structures - \$21,000,000 Agricultural Structures - \$14,000,000

Total - \$92,000,000

Floodproofing - Structures Affected

Summary of Structures At Risk of Flooding in Chehalis River Floodplain								
Number of Structures	Baseline				With Dam and Airport Levee			
	Dec 07	500-Year	100-Year	20-Year	10-Year	Dec 07	500-Year	100-Year
Flooded	2040	3645	1384	372	175	753	2031	821
>1.0 feet	1368	2743	829	167	83	432	1306	459
>2.0 feet	820	1926	489	76	28	241	762	241
>3.0 feet	470	1159	293	22	7	139	471	117
>4.0 feet	263	657	155	6	2	65	300	54
>5.0 feet	159	385	76	1	0	28	158	25
Assessed Value of Improvements Inundated (\$Million)	\$238	\$411	\$137	\$30	\$13	\$64	\$206	\$73
Cost to Floodproof all Inundated Structures (\$Million)	\$146	\$273	\$92	\$20	\$9	\$46	\$149	\$50
Residential (\$ Mil)	\$107	\$205	\$57	\$10	\$4	\$28	\$101	\$28
Commercial (\$ Mil)	\$26	\$44	\$21	\$6	\$3	\$11	\$26	\$12
Agricultural (\$ Mil)	\$13	\$24	\$14	\$4	\$2	\$7	\$22	\$10

Floodproofing – with Climate Change

Summary of Structures At Risk of Flooding in Chehalis River Floodplain

Number of Structures	Baseline	Climate Change	
Number of Structures	100-Year	100-Year	Change vs Base
Flooded	1384	2202	59%
>1.0 feet	829	1462	76%
>2.0 feet	489	830	70%
>3.0 feet	293	481	64%
>4.0 feet	155	301	94%
>5.0 feet	76	161	112%
Assessed Value of Improvements Inundated (\$Million)	\$137	\$255	86%
Cost to Floodproof all Inundated Structures (\$Million)	\$92	\$161	75%
Residential (\$ Mil)	\$57	\$110	93%
Commercial (\$ Mil)	\$21	\$30	43%
Agricultural (\$ Mil)	\$14	\$21	50%

Floodproofing

- No environmental impacts from this alternative
- Cost is preliminarily estimated to be \$92 million \$146 million (100-year to 2007 event)
- Costs rise by 75% when climate change is accounted for (from \$92 million to \$161 million for 100-year event)

Next Steps

- Develop conceptual level designs for projects that don't already have this
- Assess the flood reduction benefit of a suite of potentially significant projects
 - With and without the water retention structure
 - With and without the I-5 alternatives
- Preliminary Estimate of Costs

Reporting

Summary of Key Results used for Economic Analysis

Cost of floodproofing homes and businesses
Small project list does not have a significant, measurable effect on mainstem flooding
There are no significant environmental impacts

Questions

