Green/Duwamish River Watershed

Pollutant Loading Assessment

Technical Advisory Committee Meeting April 6, 2016

complex world CLEAR SOLUTIONS™

Model selection

LSPC Watershed Model

- Previous TAC meeting (July 6, 2015) went through the characteristics and proposed application of the LSPC model in detail.
 - We won't repeat that material here...
 - Focus here on decisions and refinements made in conjunction with QAPP
 - Example of first phases of calibration process
- Phased approach First phase addresses flow and sediment calibration
 - may be further refinements (and additional data) for toxics calibration

Refinements to Existing HSPF Models

- Combine 17 linked HSPF model to one LSPC model
- Extend model area to cover direct drainage to LDW within City of Seattle

Model Boundaries and Time Period

- Work with existing (2007) land use classes
- Treat Howard Hanson Dam as boundary condition
 - Do not model upstream watershed
 - Use gaged flows
 - Use fixed (seasonal?) assumptions for water quality
 - Check flow, temperature and water quality performance based on downstream monitoring at Tukwila

► Time Period:

- Extend end from 2009 to at least 2016
- Hydrologic Calibration
- Model calibration period for hydrology: 1996-2016

Calibration

► Flow

- Continuously measured and simulated
- Multiple volumetric error statistics
- Nash-Sutcliffe coefficient of model fit efficiency

Water Quality

- Sparse, point-in-time measurements
- Report annual and seasonal relative error statistics for sediment calibration
- For toxics calibration subject to change through updates to QAPP as additional data are collected

Hydrologic Calibration

Flow Gage Locations Map produced by H. Nicholas, 02-29-2016 NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet

Sediment Transport Calibration

- Existing hydrology calibration is reasonable
 - Will extend calibration and identify potential improvements
- Sediment transport:
 - Limited suspended sediment data
 - Depends on channel scour and deposition processes
- Strategy
 - Use all available data to improve hydraulic simulation of shear stress and scour/deposition
 - Use 1996-2016/7 data as available for calibration
 - Use all data
 - Spatial corroboration by fitting to multiple monitoring points

Example: Black River/Springbrook Creek Model

Gage 12113346: Springbrook Creek nr Orilla

Gage 12113346: Springbrook Creek nr Orilla▶ Over-predicts in Winter-Spring; under in Summer-Fall...

Observed (25th, 75th) Average Monthly Rainfall (in) – Median Observed Flow (10/1/2001 to 9/30/2009) Modeled (Median, 25th, 75th)

Error Stats : Springbrook Creek nr Orilla

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 262		12113346 Springbrook Creek near Orilla		
8-Year Analysis Period: 10/1/2001 - 9/30/2009 Flow volumes are (inches/year) for upstream drainage area		Manually Entered Data Drainage Area (sq-mi): 8.44		
Total Simulated In-stream Flow:	14.65	Total Observed In-stream Flow:		15.34
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	5.99 1.94	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		6.62 2.51
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3): Simulated Spring Flow Volume (months 4-6):	1.05 4.44 6.40 2.76	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3): Observed Spring Flow Volume (4-6):		1.78 5.54 5.35 2.68
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	4.24 0.28	Total Observed Storm Volume: Observed Summer Storm Volume (7-9):		5.56 0.60
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria		
Error in total volume:	-4.51	10		
Error in 50% lowest flows:	-22.68	10		
Error in 10% highest flows:	-9.53	15		
Seasonal volume error - Summer:	-41.04	30		
Seasonal volume error - Fall:	-19.87	30		
Seasonal volume error - Spring:	3 32	30		
Error in storm volumes:	-23.65	20		
Error in summer storm volumes:	-53.06	50		
Nash-Sutcliffe Coefficient of Efficiency, E: Baseline adjusted coefficient (Garrick), E': Monthly NSE	0.785 0.570 0.724	Model accuracy increases toward 1.0		

Sub-daily Hydraulic Analysis – simulated hourly or 15 minute flows

Simulated Shear Stress

Controls channel scour/deposition of cohesive sediment

Springbrook Creek at Orilla

Black R. : Suspended sediment calibration

Watershed Model – Next steps

- Starting now, we will assemble information:
 - Spatial data
 - Flow and suspended sediment calibration time series
 - Meteorological data
 - Additional hydraulic information
- After QAPP finalization
 - Convert existing model structure to LSPC
 - Extend boundary inputs to new time period
 - Hydrodynamic re-calibration
 - Sediment Transport re-calibration
- And then...
 - Toxics data assembly and calibration

Questions and Discussion (It's always sunny in Seattle!)