Bounding Scenario Results from Salish Sea Model, Vol 1:

DO Improvements in Greater Puget Sound from Biological Nutrient Removal at WWTPs

Puget Sound Nutrient Source Reduction Project

Puget Sound Nutrient Forum February 6, 2019

Oxygen levels are low

Algal blooms

United States Nitrogen Loading 2006

United States Organic Carbon Loading 2006

NO AA NGDC, NOAA OCS, CHS, DeL

Salish Sea Model

- State of the science model.
- Thoroughly peer reviewed.

FVCOM

CE-QUAL-ICM water quality model

Developed by: PNNL in collaboration with WA ECY,

funded by EPA

Pacific Northwest

NATIONAL LABORATOR

Salish Sea Model

161 river and streams

 Rivers and streams entering Puget Sound, the Straits and the Pacific Ocean

99 point sources

- All facilities with marine
 outfalls
- 78 U.S. WWTPs
- 9 Canadian WWTPs
- 10 industrial facilities

Characteristics of three years modeled

n

DO profiles at selected stations: 2006

Model Performance for Dissolved Oxygen:

Dissolved Oxygen, mg/L				
Model Run	R	RMSE	Bias	n
2008 PSM (Bianucci et al. 2018)	0.80	1.8	-1.56	66538
2014 SSM (Khangaonkar et al. 2018)	0.83	0.99	-0.24	26082
2008 SSM	0.85	0.98	-0.53	66931
2006 SSM	0.80	1.09	-0.57	135115
2014 SSM	0.81	0.96	-0.34	87725

Uncertainty of predicted DO is well within acceptable range

Salish Sea Model

Chesapeake Bay Model

* Cerco and Noel. 2013. Twenty-one-year simulation of Chesapeake Bay Water Quality Using the CE-QUAL-ICM Eutrophication Model. JAWRA. Vol 40. Issue 5. pp:1119-1133

** Irby et al. 2016. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences. 13, 2011-2028.

Maximum depletions below dissolved oxygen standards in Washington's portion of the Salish Sea are also localized in shallow embayments.

Predicted dissolved oxygen depletions in Budd Inlet are the highest for the years modeled.

Embayments with poor flushing exhibit higher number of cumulative noncompliance days of the marine water quality standard.

Carr Inlet and Quartermaster Harbor exhibit the highest number of cumulative exceedance days during the years modeled.

Bounding Scenarios

Impact of rivers on dissolved oxygen.

- Impact of municipal WWTPs on dissolved oxygen.
- Impact of reduced nitrogen and carbon at all WWTPs.

Impact of reduced nitrogen and carbon at medium to large sized WWTPs.

Impact of reduced nitrogen and carbon at large WWTPs.

* TetraTech 2011. Technical and Economic Evaluation of Nitrogen and Phosphorus Removal at Municipal Wastewater Treatment Facilities in Washington State. Ecology Publication Number 11-10-060

Midsize and Large Wastewater Treatment Plants

reduces the number of days when Standards below the Ð σ depletions BNR

BNR improves the number of non-compliant days

BNR improves the extent of non-compliant area

70% Reduction in noncompliant area (%) 60% 50% 40% 30% 20% 10% 2006 2008 2006 2014 2006 2008 2014 2008 2014 0%

Improvement in non-compliant area with BNR

All plants

Mid & large plants Large plants

Conclusions & Next Steps

- Multiple years modeled show that status quo DO levels are below standards in many areas of Greater Puget Sound where circulation is poor
- BNR at WWTPs improves DO in terms of magnitude, duration and spatial extent by 20 to 50
 percent with highest improvement when BNR is implemented at all WWTPs. Note the
 nearfield and farfield impacts of BNR!!
- Additional reductions in watershed nutrients are needed to fully comply with DO standards in the greater Puget Sound. This would be included in phase 2:
 - look at various reductions at the mouths of rivers (watersheds) in combination with BNR at WWTPs to develop a set of anthropogenic loadings that improves DO levels to DO standards
- Look at future growth impacts on DO depletions in Puget Sound

Questions?

1. Bounding Scenario Report: <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1903001.html</u>

2. Ecology webpage for the Salish Sea Model: <u>https://ecology.wa.gov/Research-Data/Data-resources/Models-</u> <u>spreadsheets/Modeling-the-environment/Salish-Sea-modeling</u> (includes links to all model related publications)

3. Pacific Northwest National Laboratory webpage for the Salish Sea Model: <u>https://salish-sea.pnnl.gov/</u>

4. Reducing nutrients in Puget Sound: <u>https://ecology.wa.gov/Water-Shorelines/Puget-Sound/Helping-Puget-Sound/Reducing-Puget-Sound-nutrients</u>

5. Nitrogen in Puget Sound - A Story Map: https://waecy.maps.arcgis.com/apps/MapSeries/index.html?appid=907dd54271f44aa0b1f08efd7efc4e30

> Anise Ahmed aahm461@ecy.wa.gov

