Nooksack-Fraser Transboundary Nitrogen Project: Goals, Results & Links to PSNSRP

DAVID HOOPER, JIAJIA LIN, JANA COMPTON

JILL BARON, CHRIS CLARK, DONNA SCHWEDE, SHABTAI BITTMAN, BARB CAREY, PETER HOMANN, HANNA WINTER, PETER KIFFNEY, NICHOLE EMBERTSON, HEATHER MACKAY, ROBERT BLACK, GARY BAHR

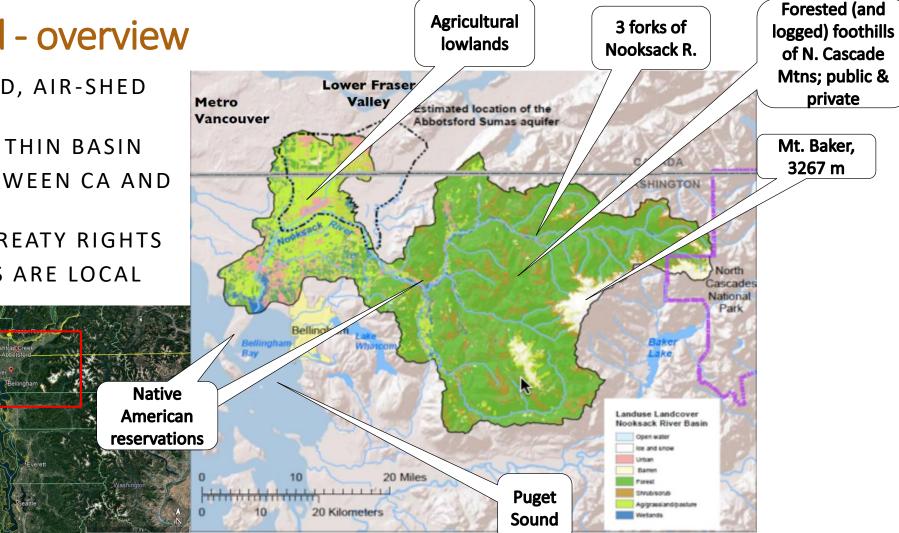
Puget Sound Nutrient Forum, University Place, WA

June 4, 2019

The views expressed in this presentation are those of the authors and do not necessarily

represent the views or policies of the US EPA or other agencies.

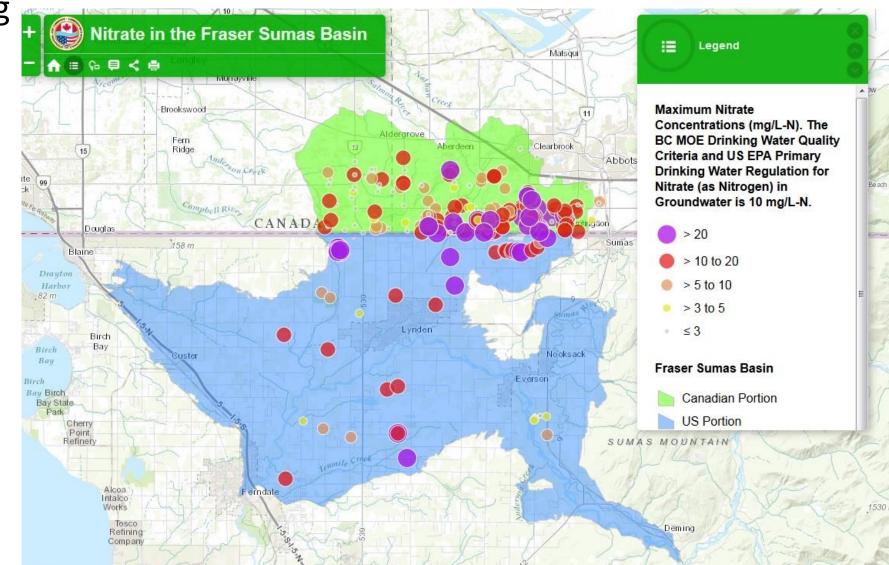
Outline


- •Nooksack-Fraser Transboundary Nitrogen Project (NFTN) - Dave
 - Setting and goals
 - International context
- •Nitrogen budget Jiajia
 - Method and data sources
 - Preliminary results
- •Future work Jana
 - Potential links to PSNSRP

Nooksack watershed - overview

- 1. US & CANADA WATERSHED, AIR-SHED AND AQUIFER
- 2. VARIETY OF LAND USE WITHIN BASIN
- 3. POLICY DIFFERENCES BETWEEN CA AND US
- 4. TRIBAL/FIRST NATIONS TREATY RIGHTS
- 5. "DOWNSTREAM" EFFECTS ARE LOCAL

oogle Farth


1. NFTN: WATERSHED FOCUS - LINKED N ISSUES

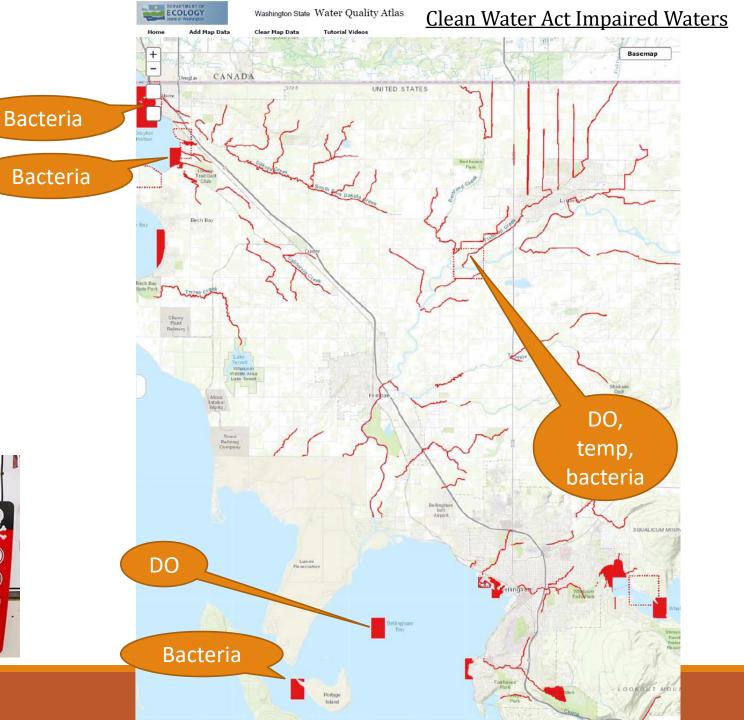
- 2. B'HAM BAY, PUGET SOUND AS END POINTS
- 3. COMPLEMENTARY FOCUS TO PSNSRP

Groundwater/drinking water issue

•44% ≥ 5 mg/L •29% ≥10 mg/L •14% ≥ 20 mg/L

•73 mg/L max nitrate-N in private well

IJC Cross-Border Characterization


Surface water quality issues

- Salmon habitat and restoration
- Cross-border policies and pollution
- Nooksack River flows to Bellingham Bay
 - Algal bloom; hypoxia
 - HABs, fecal coliform→shellfish closures

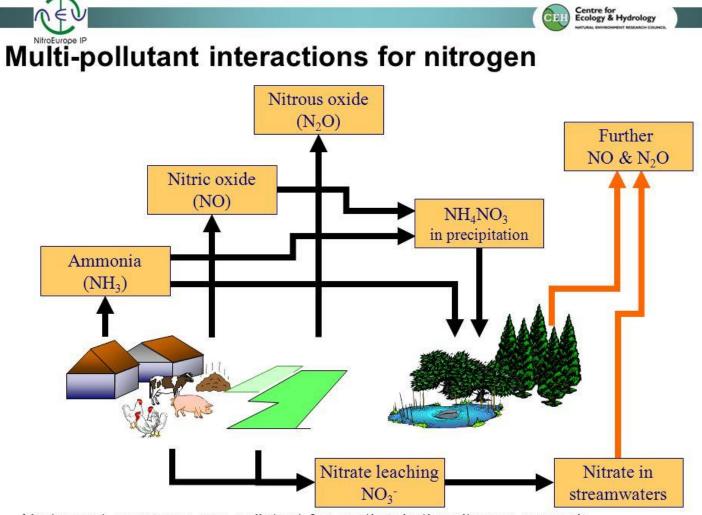
Air quality issues

- Visibility
- Odor ag lands
- N deposition North Cascades NP, National Forests
- Human health effects of air pollution
- Requires attention to NO_x, NH₃, SO₂, ozone, organic carbon sources

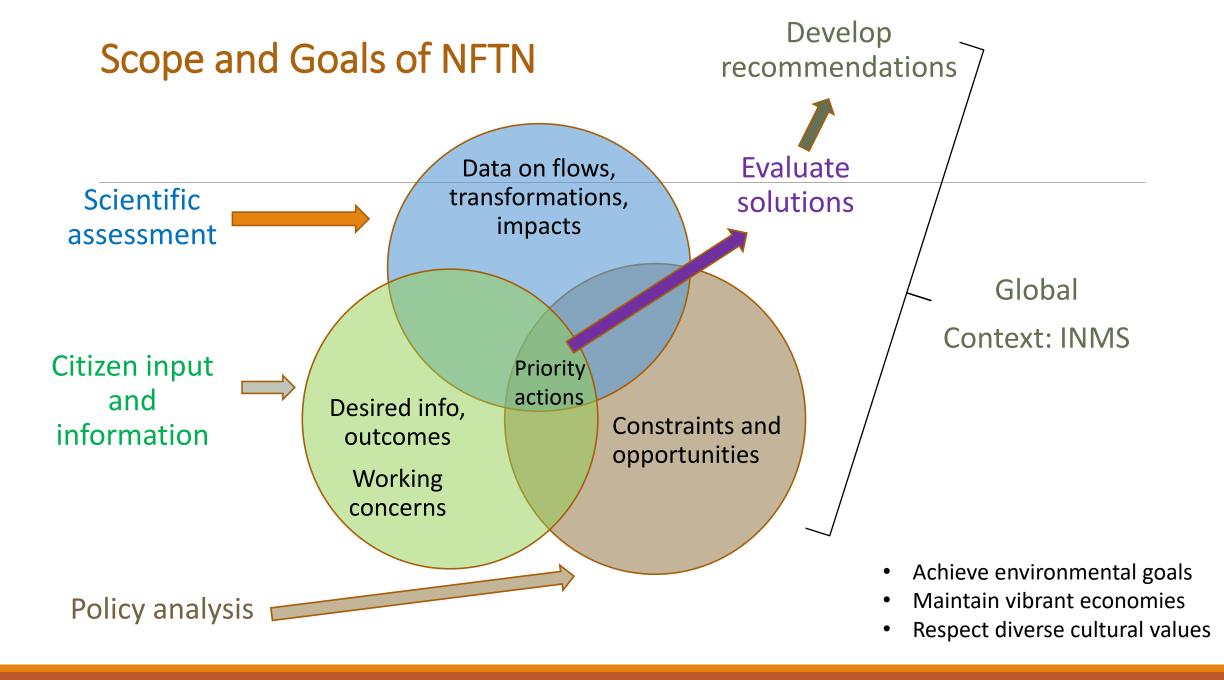
Vancouver, British Columbia, Canada

(Photo credit: http://www.ens-newswire.com/ens/oct2004/2004-10-01-04.html)

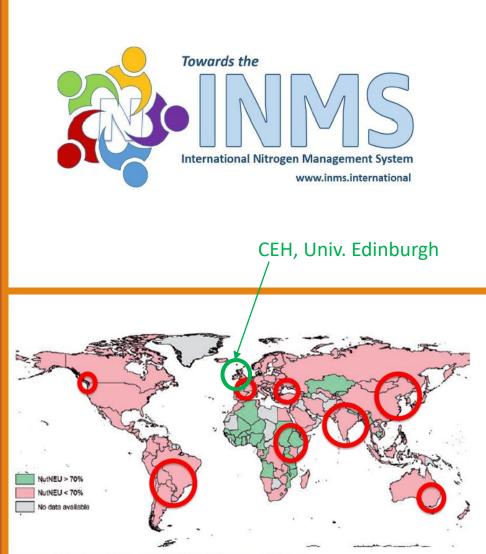
Image Taken On: 2013-09-13 10:30 Direction: East


GOOD

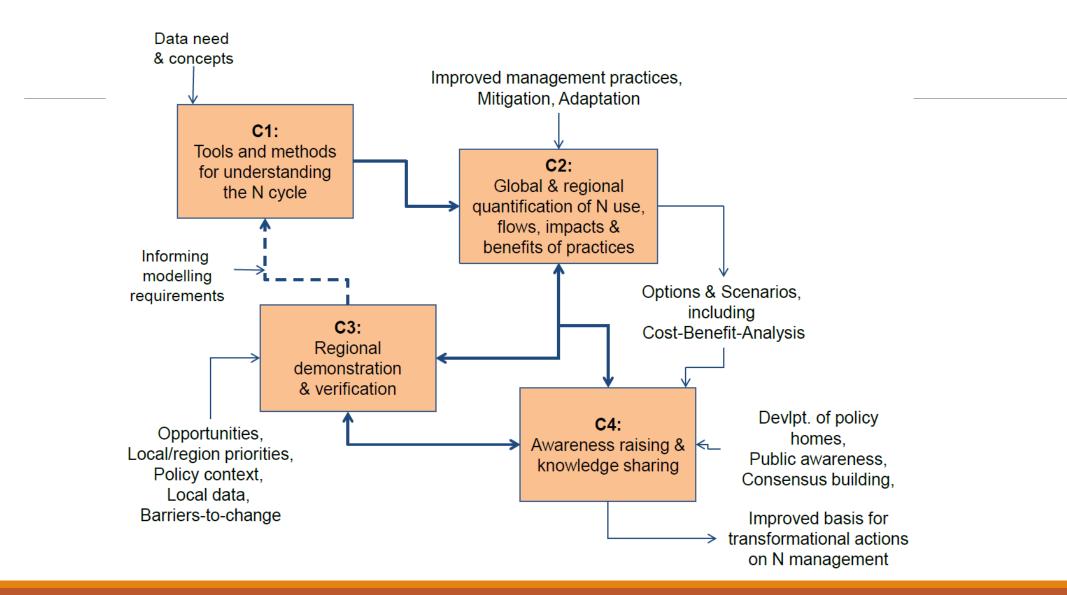
Nooksack-Fraser Transboundary Nitrogen Project


Integrated assessment of N benefits and threats (water, air, land)

Abatement may swap one pollutant for another in the nitrogen cascade


Collaborative working group: >35 agencies, universities, tribes, and NGOs

International Nitrogen Management System (INMS)

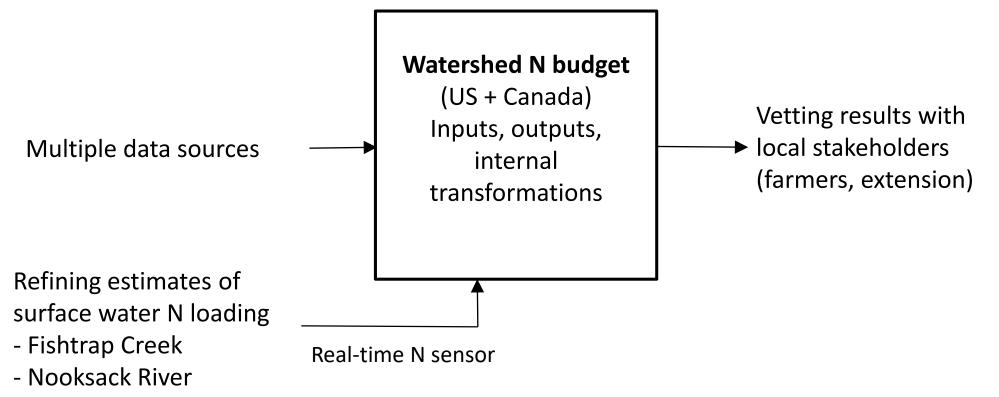

- Science community, private sector & civil society
- Synthesize evidence to support integrated international policy development
- Implemented by the UN Environment Programme
- Funding through Global Environment Facility (GEF)
- Over 70 global project partners, with eight regional demonstrations
- NFTN is the N. American demo project

Countries that have a Crop NUE_N below 70% (2008, for details see Appendix).

Sutton et al. 2013

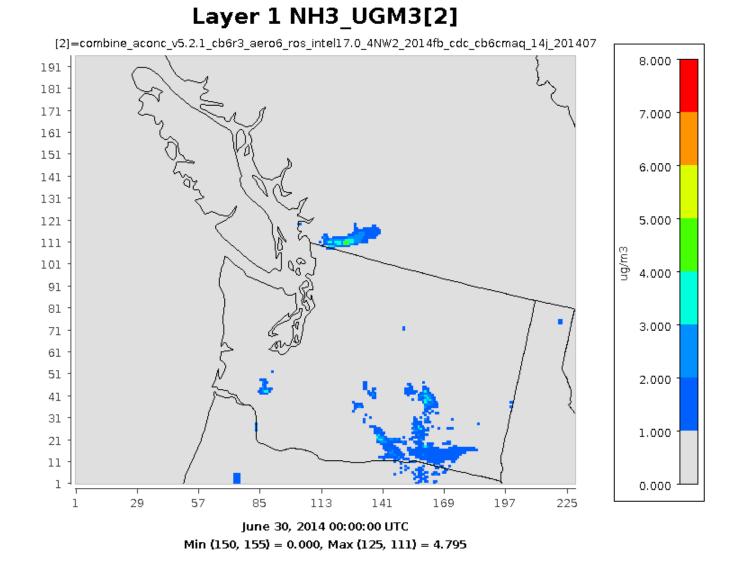
Overview of INMS Components

INMS Component 3


NFTN work aligns with <u>INMS Activities (3.1-3.4) and tasks</u>

- 3.1 Conduct regional N_r assessments (demo projects)
- 3.2 Workshop to synthesize demo activities
- 3.3 Benchmarking N indicators for different regions
- 3.4 Demonstrating benefits of joined up N approach

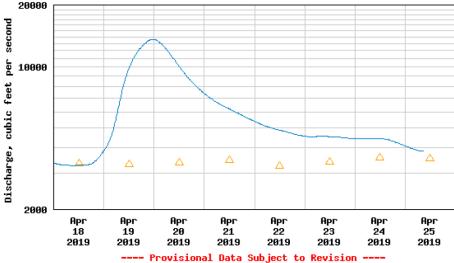
http://www.inms.international/our-project-0


Tasks 3.1.1-3.1.3 – Quantifying flows and uncertainties

- Identified/perceived key N flows for the region
- Identified/perceived uncertainties for the region

Quantifying em & dep: CMAQ Air Quality Modeling Donna Schwede (EPA)

- Emissions NO_x , NH_3
- Deposition
- Contribution to N budget within watershed



Quantifying surface water N loading: Real-time nitrate sensors

- Follow-up from Nutrient Sensor Action Challenge
- Nooksack River OTT
- Fishtrap Creek SUNA
- Kamm Creek OTT

https://waterdata.usgs.gov/nwis/uv?site_no=12213100

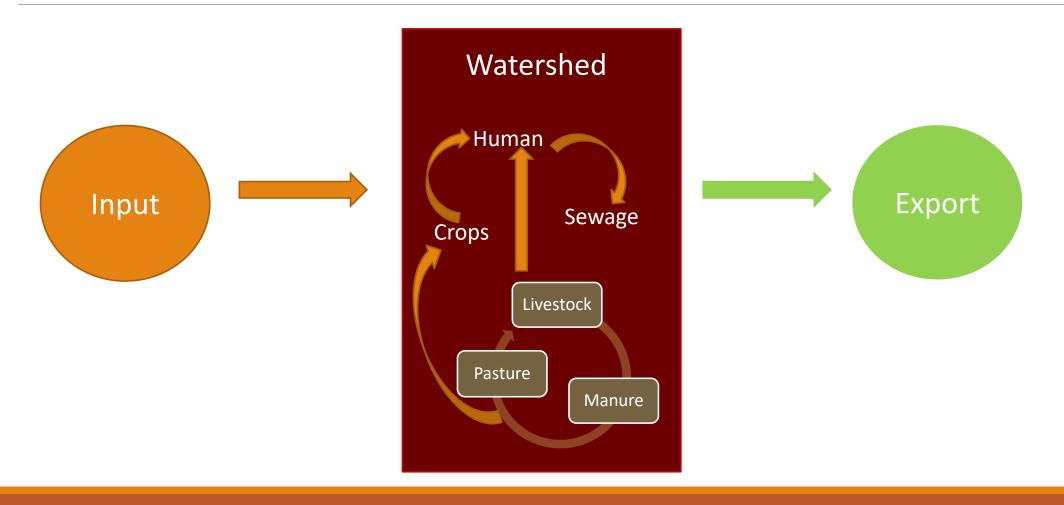
🛆 Median daily statistic (52 years) — Discharge

USGS 12213100 NOOKSACK RIVER AT FERNDALE, WA

--- Provisional Data Subject to Revision ----

To Do: Tasks 3.1.4, 3.1.5, 3.1.6 - Regional N Priorities

Description of watershed in relation to N performance indicators, with stakeholder input.


- Water (e.g., eutrophication, hypoxia, harmful algal blooms)
- Air (e.g., NO_x, smog, human health)
- Greenhouse gases (N₂O)
- Ecosystems (e.g., N deposition \rightarrow biodiversity)
- Soils (e.g., fertility, crop production)

Opportunities for collaboration

- NFTN \rightarrow PSNSRP
 - Quantifying N flux
 - WA Sea Grant Kodner, Hooper, & Curry: Effects of N loading on phytoplankton blooms in Bellingham Bay, WA;
- PSNSRP \rightarrow NFTN
 - N loading and environmental thresholds for hypoxia

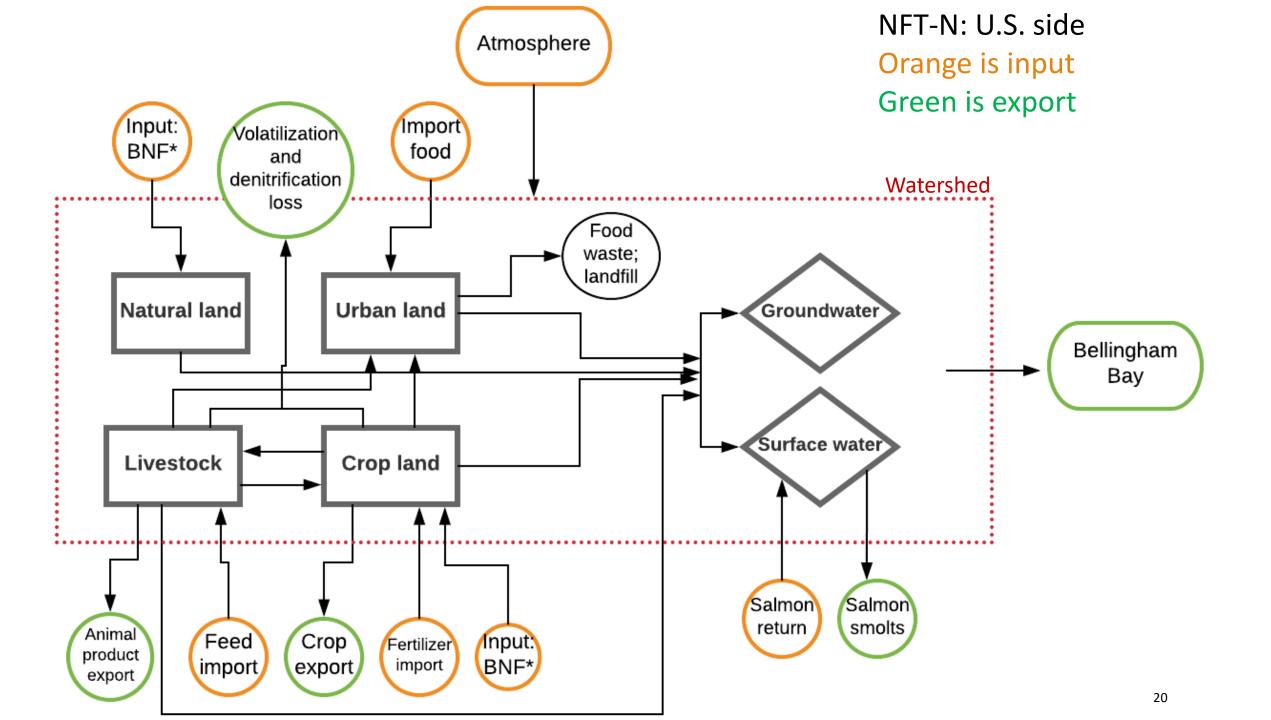
NFT-N Nooksack-Fraser Transboundary Nitrogen budget

Why a nitrogen budget?

- Quantitative information on N fluxes (year: 2014)
- Examine N fates and transport
- Link sources to contamination: where and how to reduce N fluxes
- Ongoing project
- Cross boundary issues

Project Goals

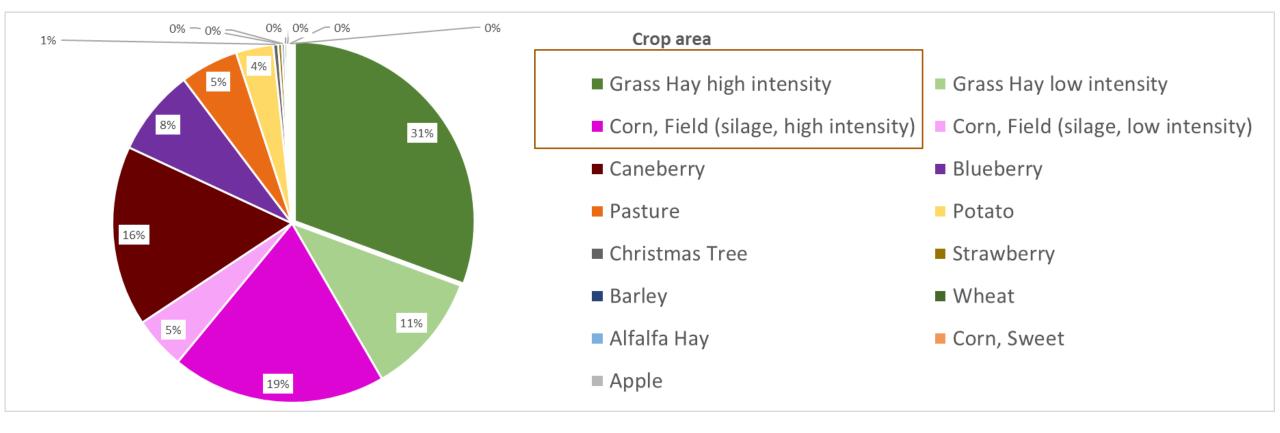
Develop a nitrogen inventory using local data


Share among stakeholders

 Anyone affected by nitrogen in some way is a stakeholder, who is welcome to participate, adding your information, knowledge, and perspective

 Identify and evaluate solutions that can be used by local stakeholders to meet community goals

Improve air quality and drinking water quality


• Economic goals

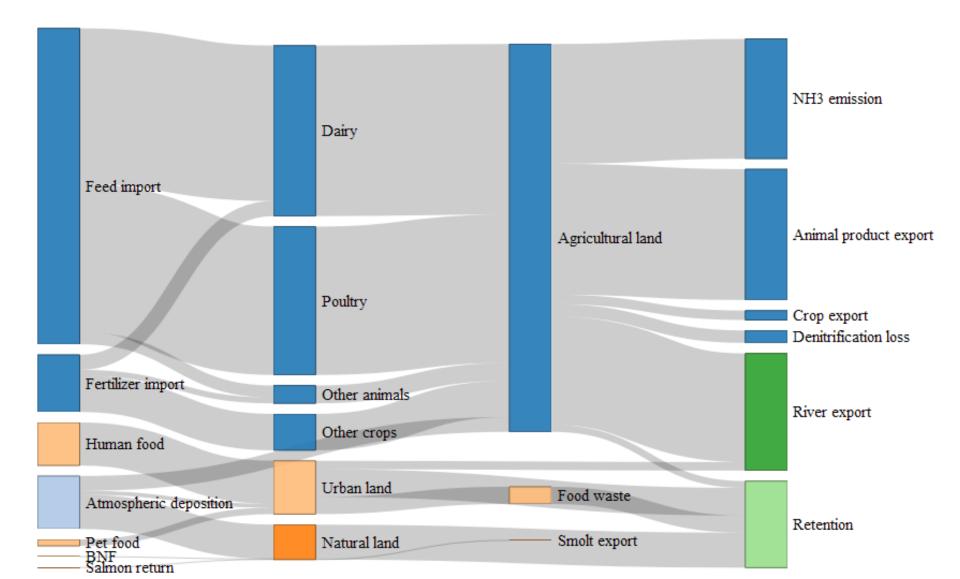
NFT-N: Data sources— Inputs

Input

Component	Parameter	Data source
Atmospheric deposition	Total N deposition	EPA-CMAQ
Food import (human)	Population	U.S. Census (2015)
	Nutritional intake, per capita	USDA, 2012a; 2012b
Food import (pet)	Watershed household	U.S. Census (2015)
	Population: dog - 37% of watershed households; cat - 30% of watersged households. Assuming one pet per household.	U.S. Pet Ownership Statistics (AVMA, 2012)
	Nutritional and energy needs	Veterinary online manual; Pet Basic Calorie Calculator (OSU)
Feed import	Animal populations (other than dairy cow)	NASS (2012)
	Dairy cow population	WSDA (2014)
	Nutritional needs of farm animals	Boyer 2002; Hong 2012; NAS web; Gomez 2011; Altine et al 2016; Nennich 2005; Shabtai mode 2018?; Goyette 2016; Statistics Canada 2013
Fertilizer import	Crop land	WSDA land use map (2014)
	Fertilization rates	Local agriculture experts (personal communication); Oregon and Washington Extension documentations
Biological N fixation	Alder density	OSU-LEMMA (2002)
	Alder N fixation rate	Binkely et al., 1994
Adult fish return	Salmon population and size	Nooksack Stock Assessment (personal communication)
	Adult fish body weight	Gresh et al., 2000
	Adult fish body N content	Moore, 2011 AND MORE

NFT-N – complex land uses

NFT-N: Data sources – Outputs

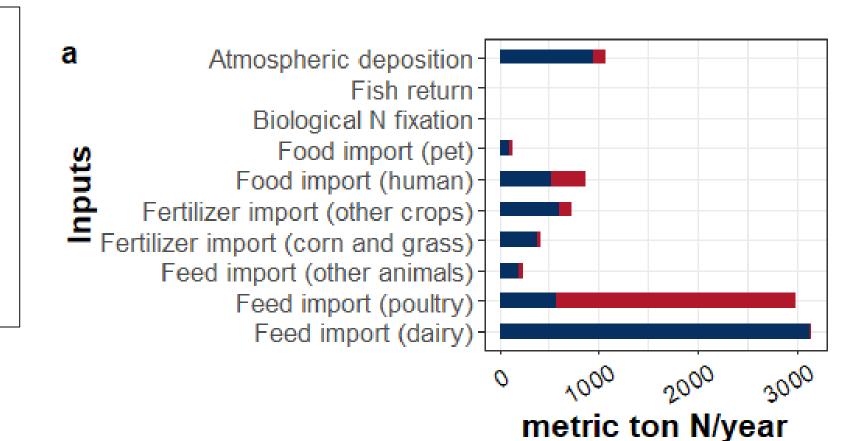

	Component	Parameter	Data source
	Riverine nitrate export	Flow	Monitor: USGS site 12213100
		Nitrate concentration	Monitor: WA Dept. of Ecology site 01A050
	Riverine TKN export	Flow	Monitor: USGS site 12213100
		TKN concentration	Monitor: Lummi Nation site SW118; USGS site 12213100
	NH3 volatilization	Animal manure application rates	(See Table 1 Internal Section: Manure application)
		Synthetic fertilizer application rates	(See Table 1 Input Section: Fertilizer import)
Output		Fertilizer and manure volatilization rate/percentage	USDA-NRCS (1998); Local agriculture experts (personal communication)
	Denitrification loss	Fertilizer and manure denitrification rate/percentage	USDA-NRCS (1998); Local agriculture experts (personal communication)
Out	Animal product (milk)	Dairy cow population	WSDA (2014)
		Milk N production rate	USDA National Nutrient Database (2015)
	Animal product (other)	Animal populations (other than dairy cow)	NASS (2012)
		Animal product N content	USDA National Nutrient Database (2015); Statistics Canada (2013); Goyette et al., 2016
	Crop product	Crop land	WSDA land use map (2014)
		Crop N content	USDA nutrient tool
	Smolt export	Smolt population and size	Lummi Nation (personal communication)
		Smolt body weight	Skagit River System Cooperative (personal communication)
		Smolt body N content	Moore, 2011 AND MORE

NFT-N: Data sources— Internal processes

	Component	Parameter	Data source
	Human waste	Sewage Treatment Plants (STPs) monitorred N in effluents	Everson STP; Lynden STP; Ferndale STP
Inter		Septic population: total population - service population on sewage	NASS (2015); Everson STP; Lynden STP; Ferndale STP
		Septic leaching rate, per capita	Local agriculture experts (personal communication)
	Food waste	40% of total available food	Hall et al., 2009
	Manure application	Animal populations (other than dairy cow)	NASS (2012), WSDA (2014)
		Animal excretion rates	NRCS (); Bittman et al. (); NANI ()
	Crop to animal feed	Feed crop production rate	Local agriculture experts (personal communication); NASS (2012)
		Crop N content	USDA nutrient tool; local agriculture experts (personal communication)

Results: N flows in the NFT Basin

- Feed: large proportion of inputs
- Fertilizer = human food
- Fates are nearly equal between NH₃ emission, animal product export and river export (25-30%)
- Retention and groundwater storage is large proportion (~20% of inputs)



NFT Basin N input

U.S. & Canada: similarities and differences

- 1. U.S. mostly dairy, Canada mostly poultry
- 2. Sources:

a. Feed and fertilizerdominate importsb. human proportionssimilar

Country

US

Canada

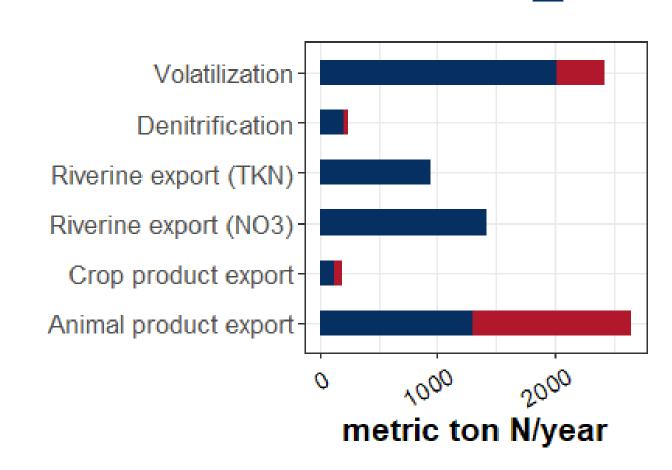
NFT Basin N export

U.S. & Canada: similarities and differences

b

Outputs

1. U.S. mostly dairy, Canada mostly poultry


2. Sources:

a. Feed and fertilizer dominate imports b. human proportions similar

b. human proportions similar

3. Losses:

a. U.S.—NH₃ and river
nitrate
b. Canada—
groundwater/unknown

Country

US

Canada

Future work

- •Refine results and publish
- •Continue to communicate and collaborate with local stakeholders
- Identify implications for management
- •Develop a modeling structure and scenarios of N use in the future using stakeholder input link to Salish Sea Model scenarios

Opportunities and connections to the PS Nutrient Source Reduction Project

Results from N sources to watershed and export to bay

data and approach for other sites

Now that we have this N budget, how do stakeholders determine how to make reductions?

- Where?
- How?
- How much to reduce?
- Which sectors?

Scenarios & connections INMS modeling – RCPs and SDGs – 6 scenarios

Selected scenarios for modeling

Scenario	Climate	Development	Land-use	Diet	N policy
Business-	No mitigation	Fossil-fuel driven	Medium regulation;	Meat &	Low
as-usual	(RCP 8.5)	(SSP 5)	high productivity	dairy-rich	ambition
Low N	Moderate	Historical trends	Medium regulation;	Medium	Low
regulation	mitigation (RCP 4.5)	(SSP 2)	medium productivity	meat & dairy	ambition
Medium N	Moderate	Historical trends	Medium regulation;	Medium	Moderate
regulation	mitigation (RCP 4.5)	(SSP 2)	medium productivity	meat & dairy	ambition
High N	Moderate	Historical trends	Medium regulation;	Medium	High
regulation	mitigation (RCP 4.5)	(SSP 2)	medium productivity	meat & dairy	ambition
Best-case	Moderate	Sustainable	Strong regulation;	Low meat	High
	mitigation (RCP 4.5)	development (SSP 1)	high productivity	& dairy	ambition
Best-case +	Moderate	Sustainable	Strong regulation;	Ambitious	High
	mitigation (RCP	development (SSP 1)	high productivity	diet shift	ambition
	4.5)			and food	
				loss/waste reductions	
Bioenergy	High mitigation	Sustainable	Strong regulation;	Low meat	High
	(RCP 2.6)	development (SSP 1)	high productivity	& dairy	ambition

From David Kanter, NYU

N policy interventions

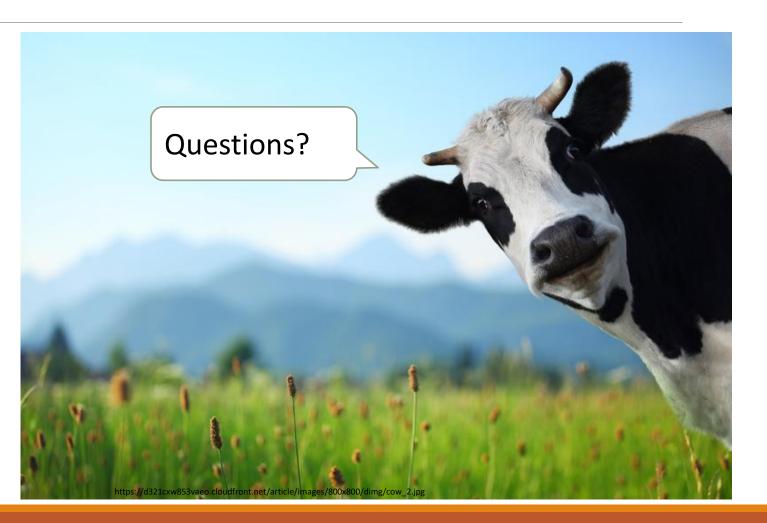
N policy ambition levels				
Sector	& country group	High	Medium	Low
	OECD	Target NUE by 2030	Target NUE by 2050	Current NUE remains constant
	Non-OECD/High N	Target NUE in 10 years after catch-up with OECD countries	Target NUE in 30 years after catch-up with OECD countries	NUE trends from past 10 years continue if positive, otherwise NUE remains constant
Crops ¹	Non-OECD/Low N	Target NUE in 30 years by avoiding historical trajectory	NUE follows historical trajectory towards high N/low NUE over 30 years, before improving	Current decreasing NUE trends continue akin to countries with similar socioeconomic status
Livestock manure excretion ²	OECD	10% reduction by 2030, 30% reduction by 2050	10% reduction by 2050, 30% reduction by 2070	Current rates remain constant to 2050
	Non-OECD/High N	N excretion rates same as OECD in 10 years after catch-up	N excretion rates same as OECD in 30 years after catch-up	Current trends continue if positive, otherwise remain constant
	Non-OECD/Low N	30% reduction for new livestock production after 2030	30% reduction for new livestock production after 2050	Current trends continue or remains constant
	OECD	90% recycling by 2030	90% recycling by 2050	Current rates remain constant to 2050
Manure recycling ²	Non-OECD/High N	50% increase in recycling by 2030; 100% increase by 2050	50% increase in recycling by 2050; 100% increase by 2070	Current trends continue if positive, otherwise remain constant
	Non-OECD/Low N	90% recycling by 2030	90% recycling by 2050	Current trends continue or remain constant
	OECD	70% of technically feasible measures by 2030, all measures by 2050	Current legislation (CLE) by 2030, 70% of technically feasible in 2050 increasing to all measures by 2100	CLE reached by 2040, further improvements slow
Air Pollution ³	Non-OECD/High-Med income	Same as OECD in 10 years after catch-up	Delayed catch-up with OECD (CLE achieved by 2050), 70% of technical feasible reductions achieved by 2100	CLE reached by 2040, further improvements slow
	Non-OECD/Low income	CLE by 2030, OECD CLE by 2050, gradual improvement towards 70% technical feasible measures	OECD CLE achieved by 2100	CLE reached 2050, further improvements negligible
<i>Wastewater</i> ^₄	OECD	>99% wastewater treated; 100% N and P recycling from new installations from 2020	>95% wastewater treated 100% N and P recycling from new installations from 2030	>90% wastewater treated
w astewater	Non-OECD/High N	>80% wastewater treated; Recycling same as OECD in 10 years after catch-up	>70% wastewater treated Recycling same as OECD in 30 years after catch-up	>60% wastewater treated
	Non-OECD/Low N	>70% wastewater treated	>50% wastewater treated	>30% wastewater treated
1. Zhang et al. 2015; 2. UNEP 2013; 3. Rao et al. 2017; 4. Van Puijenbroek et al. 2018				

Opportunities and connections to the PS Nutrient Source Reduction Project

Salish Sea Model \rightarrow NFTN

- What does the Salish Sea Model recommend to improve DO in Bellingham Bay and Puget Sound?
- How much N reduction would this require?
- How might this differ across areas of Puget Sound and why?

$NFTN \rightarrow PSNSRP$


- How could communities achieve these reductions?
- What reductions are realistic for the Nooksack Watershed and Bellingham Bay?

Thank you!

David Hooper <hooper@wwu.edu>

Jiajia Lin <lin.jiajia@epa.gov>

Jana Compton <Compton.Jana@epa.gov>

