Urban Trees for Stormwater Year-2 Results

Measuring individual tree water use in the Pacific Northwest to determine their benefits for stormwater management

Ben Leonard¹, **Ani Jayakaran**¹, Dylan Fischer², Jamie Duberstein³, John Stark^{1,} Abby Barnes⁴

¹Washington State University

²Evergreen State College

³Clemson University

⁴Washington Dept. of Natural Resources

Individual Tree Water Use Questions

> What environmental factors impact tree water use?

> Are there differences between tree species?

- > What seasonal variability do we see?
- > What are the implications for stormwater management?

Interception

Stemflow (24)

Throughfall (32)

Environment

Transpiration

Study Locations

South Puget Sound Region

Organic Farm

Parking Lot

Plot 3

The Evergreen State College

North

South

Webster Forest Nursery

Size Distribution of 64 Trees

average age = 62 years

Stemflow Results

% Stemflow by Species

Interception Results (Volumes)

Per tree average volumes grouped by species and month

*not enough usable data in July - clogging and sensor issues

Vapor Pressure Deficit (VPD) vs. Transpiration

Lambers et al. (2019)

Transpiration by VPD

Transpiration Time Series

Transpiration Results (winter/spring '20-'21)

evergreen > deciduous during the early spring

winter/spring mean:

Water Budget for 12 representative trees

> Normalized by Rainfall Depth over Canopy Area

In Asadian & Weiler (2009) interception for Douglas-fir and western red cedar were 49.1 and 60.9% respectively.

Conclusions

> Interception

- Stemflow <<< Throughfall
- Red alder highest stemflow and lowest interception
- Evergreen species highest interception
- Interception is greatest during lighter rain events

> Transpiration

- VPD drives sap flux but this relationship changes seasonally
- Low VPD days are very common in the PNW especially during the winter
- Deciduous transpiration outpaces evergreen overall
- Evergreen species have transpiration benefits during the shoulder season

Next steps

Phase 1

1. Complete sap flux-core data relationship

- 2. Complete wound-effect assessment
- 3. Complete Final Report

Phase 2

Sap flux instrumentation for younger trees <20 years
Focus on trees at The Evergreen State College

Tree Size Distribution

average age = 62 years

Inland Empire, IV is Inland Valleys, NC is Northern California Coast, SCis Southern California Coast, SW is Desert Southwest, IW is Interior West).

most street trees are less than 15 cm McPherson et al. (2016)

Deliverable schedule

Deliverable by Task	Target Deliverable Date	Target Deliv	verable Cost			
Task 1.0 Project Management						
D1.1 Semi-annual Progress Report	Jun-22	\$	2,600			
D1.2 Semi-annual Progress Report	Dec-22	\$	2,600			
D1.3 Semi-annual Progress Report	Jun-23	\$	2,600	DINK		
D1.4 Semi-annual Progress Report	Dec-23	\$	2,600			
D1.5 Semi-annual Progress Report	Jun-24	\$	2,600			
Task 2.0 Planning and QAPP						
D2.1 Draft QAPP amendment	Feb-22	\$	3,106	WSU		
D2.1 Final QAPP amendment	Mar-22	\$	3,106			
Task 3.0 Instrument Purchase	W/S11					
D3.1 List of instruments purchased	Feb-22	\$	38,165	W30		
Task 4.0 Site Instrumentation	Evergreen, WSU,					
D3.1 Installation Memo	Apr-22	\$	27,556	Clemson		
Task 5.0 Maintenance/E						
D5.1 updates incl. in progress report	Dec-22	\$	18,267	Evergreen, WSU, Clemson		
D5.2 updates incl. in progress report	Jun-23	\$	18,267			
D5.3 updates incl. in progress report	Dec-23	\$	18,267			
Task 6.0 Data Analyses				Evergreen, WSU,		
D6.1 Copy of data in Excel	Jul-24	\$	27,107	Clemson		
Task 7.0 Communication						
D7.1 Whole Study Draft Report	Aug-24	\$	11,608	Evergreen WSII		
D7.2 Whole Study Final Report	Oct-24	\$	11,608	Clemson		
D7.3 Two Presentations	Nov-24	\$	11,608	CIEIIISUII		
D7.4 Draft Fact Sheet	Dec-24	\$	11,608			
Total		\$	213,273			

Thank you!

Carly Thompson, Brandon Boyd, Jose Ramirez, Jason Berg - WSU

John Trobaugh and Brian Morris – Nursery Managers, Webster Nursery Farm, WaDNR

Linden Lampman, Andrew Ryan, Miles Micheletti, and Ben Thompson - WaDNR

Keunyea Song- SAM project manager

Budget Phase 2

		DNR	NR WSU		Evergreen		Clemson						
											Travel + WA	All	
		Sal+Ben	Sal+Ben	Supplies	Travel	Sal+Ben	Supplies	Travel	Sal+Ben	Supplies	Insurance	Indirects	Total Task
Task 1	Project Admin	20,000 - *10,000	-	-	-	-	-	-	-	-	-	3,000	13,000
Task 2	QAPP amendment	-	4,778	-	-	-	-	-	-	-	-	1,433	6,212
Task 3	Instrument purchase	-	-	38,165	-	-	-	-	-	-	-	-	38,165
Task 4	Instrument installation	_	4,778	_	1,560	4,741	_	-	8,880	-	2,077	5,520	27,556
Task 5	Maintenance and data downloads	-	2,389	-	1,560	30,814	6,000	2,000	-	-	2,077	9,961	54,801
Task 6	Data analyses and delivery	-	14,335	-	-	4,741	-	-	1,776	-	-	6,255	27,107
Task 7	Outreach and communication	_	21,502	_	-	7,111	_	-	7,104	-	-	10,715	46,433
	Totals	10,000	47,783	38,165	3,120	47,406	6,000	2,000	17,760	_	4,154	36,885	213,273

* Dollars left from Phase 1