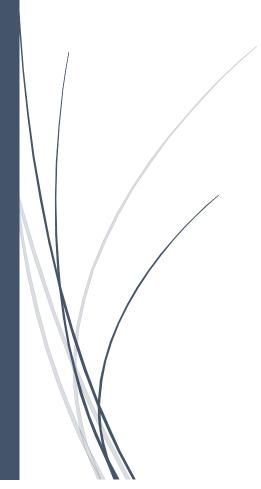
5/15/2020

Ditch maintenance & retrofits for improved stormwater management

Proposal to the Stormwater Action Monitoring's 2020 Request for Proposals


Prepared by:

The Washington Stormwater Center- Washington State University, Herrera Environmental Consultants, and The City of Tacoma.

macuist

Dan Nordquist – Ássociate VP Research, Washington State University May 12, 2020

WASHINGTON STATE UNIVERSITY – PUYALLUP, CITY OF TACOMA, AND HERRERA ENVIRONMENAL CONSULTANTS

PROJECT PURPOSE

SUPPORT OF PRIORITY TOPICS

From SWG's 2019 list of priority topics, the following two topics will be addressed here:

- 1. Priority topic 14: Compare cleaned/uncleaned ditches to assess effectiveness of ditch cleaning at removing legacy pollutants. Include evaluation of likely release of pollutants.
- 2. Priority topic 15: Evaluate effectiveness of ditch enhancement techniques (i.e., turning ditches in to bioswales) at removing pollutants.

We will work with the City of Tacoma to identify ditches in their jurisdiction for instrumentation and testing with alternative practices. The City of Kirkland, and Kitsap County have been identified as potential partners to serve on a technical advisory committee and share maintenance practices.

THE RELATIONSHIP BETWEEN DITCHES AND STORMWATER QUANTITY AND QUALITY

Roadside ditches and swales are the first responders to stormwater runoff from roadways. Additionally, ditches and swales receive runoff from many different upstream sources (Alexander, 2015). Ditches and swales, therefore, offer a vital yet under-exploited potential to mitigate stormwater quality emanating from catchments of varying sizes. There is a critical need to evaluate the potential for ditches to manage stormwater, as well as to determine what are the most suitable maintenance and ditch-enhancement techniques to ensure peak water quality performance. Installing alternative ditch configurations could increase contact times between water and the plant/soil interface thereby providing water quality benefits. We therefore propose to evaluate the concentration of pollutants in ditches under current conditions compared with enhanced maintenance practices and alternate ditch configurations. The results of this study will characterize the pollutant load in unmaintained ditches and a variety of water quality and maintenance enhancements to evaluate the potential that alternative ditch maintenance and configurations might address both water quality and quantity issues.

The 2019 Phase 1 Municipal Stormwater Permit has provided guidance for the Stormwater Management Action Planning (SMAP) program. SMAP is the first step in requiring stormwater retrofits in priority watersheds in permitted jurisdictions. With an increased focus on retrofitting existing MS4s there is a growing need for research on what retrofit methods will be most effective to implement. Phase 1 jurisdictions such as Pierce, Clark, King, and Snohomish Counties have hundreds of miles of roadside ditches which function as conduits for stormwater. If we can find ways to alter these conveyance systems so that they act as treatment systems, then a powerful new tool would become available for these permittees. This research will lay the foundation for improve ditch management techniques that will eventually lead to linear BMP methodologies for roadside ditches.

THE IMPORTANCE OF DITCHES IN MANAGING STORMWATER

Road runoff is the primary contributor of runoff to most roadside ditches. The sources of contamination are road surfaces, vehicles (oil, fuel, tires, brakes), atmospheric deposition, surround land use, and road maintenance chemicals (Maestre and Pitt, 2006; Opher and Friedler, 2010). The contaminants in roadside runoff are sediment, many different types of metals, organic chemicals from deicing and agricultural chemicals, and a set of emerging pollutants yet to be identified (Bannerman et al., 1993; Peter et al. 2018). In addition, the ditch itself is a source of potential sediment from bank erosion.

Since ditches are the primary conveyance mechanism for roadside runoff, connect to down gradient streams, and ultimately connecting to the receiving waters, they could be adding to the impairment of the Puget Sound (Herrera 2011). They represent a largely untapped source of improvement for the Puget Sound water quality if they could be managed and maintained to more effectively manage stormwater quality and quantity.

PROJECT DESCRIPTION AND SCOPE OF WORK

After multiple conversation with permittees, ditch maintenance was found to be the most important aspect of ditch management in the Puget Sound region. This is because ditches which are poorly maintained (either neglected or maintained in a manner that promotes erosion) can become pollutant sources for local receiving waters. The removal of vegetation and sediments tend to be the most common forms of ditch maintenance. However, maintenance crews prefer to maintain ditches from within a vehicle, and perceive manual labor (use of hand tools) requirements as a huge barrier to maintenance. With hundreds of miles of roadside ditches in western Washington, poor ditch maintenance methodologies could be contributing ecologically significant pollutant loads to our waterways. These systems should be managed and optimized as water treatment pathways, not reduced to pollutant generating surfaces. The overall goal of this work is to determine better strategies to maintain or retrofit ditches, so they are both easily maintained, and can promote pollutant removal.

PROJECT OBJECTIVES

We believe the effective management of roadside ditches must include a combination of appropriate ditch shape form, vegetation, and maintenance protocol. Ditch configurations that increase the contact between water and the soils/plant interface for pollutant removal without compromising ditch conveyance is critical. The appropriate vegetation for planting in ditches must meet erosion control needs, not be invasive, and must not impede high flows. Lastly, minimal maintenance of vegetation and ditch form is key. The overall goals of this work are therefore to evaluate several ditch maintenance strategies that can be either implemented from a vehicle or performed once as a retrofit; and identify appropriate vegetation palettes that promote erosion control without impacting the ability of the ditch to convey high flows. Specifically, the project objectives are to: A) quantify maintenance effort for each treatment; B) quantify pollutant reduction or export across the various treatments; C) quantify potential flow control benefits; and D) assesses alternative vegetation palettes.

PROJECT DESIGN

Through a careful selection of ditches within the City of Tacoma boundaries, we will monitor the impacts of maintenance and ditch retrofits on flow and pollutant loads. We will evaluate three alternative ditch maintenance strategies as well as five vegetation planting palettes. Flow and pollutant loads will be compared with ditches that are either maintained using conventional ditch practices, or not maintained at all.

At each site, the project will evaluate vegetation health, flow, and water quality changes with the following four ditch treatments (See Figure 1):

- Three ditch maintenance strategies unmaintained (Control), maintained with erosion control (Treatment 1), and maintained without erosion control (Treatment 2).
- 2. One ditch reshaping strategy (**Treatment 3**) one of the following per site: u-shape, skip ditching, or 2-stage channel.

The Control reach will consist of an overgrown ditch and will remain unmaintained for the duration of the study. Treatment 1 (maintained with erosion control) will consist of an excavated ditch with standard erosion

control practices (e.g., coir wattles, straw mulch, etc.) with 10 planted strips, each 20 feet wide. Each strip will consist of a different grass seed mix specifically selected for western Washington's challenging ditch environments. Treatment 2 will consist of an excavated ditch with no erosion control (a standard practice in the region). The Control, Treatment 1, and Treatment 2 configurations will be repeated at each of the three sites. Treatment 3 will consist of one of the following excavated ditch strategies (with erosion control): U-shaped channel, skip- ditched channel, or a 2-stage channel. One of each of these strategies will be deployed at each of the three sites. To reduce project scope, replication of these strategies across sites will not be possible.

Figure 1 shows one example site. To reduce the number of monitoring stations the treatments are positioned in sequence. A road section will be chosen such that there is relatively uniform lateral sheet flow from the road surface with most of the flow generated from upstream sources. We anticipate elevated pollutant export from Treatment 2 which will make pollutant removal differences easier to observe in Treatment 3.

PROJECT METHODS

Automated samplers and flow metering flumes will be installed at 5 locations bracketing each of the four treatment reaches (Figure 1). Water level sensors associated with each flume will be interfaced with two dataloggers per site (one datalogger for the upper 2 treatments and a second for the bottom 3 treatments). The dataloggers will have integrated cellular modems and one rain gauge per site. Equipment will be housed in secure environmental enclosures and powered with solar. Eight events will be targeted for automated sampling over three years following the Washington State Department of Ecology's Technology Assessment Protocol – Ecology (TAPE) methods (Ecology 2018).

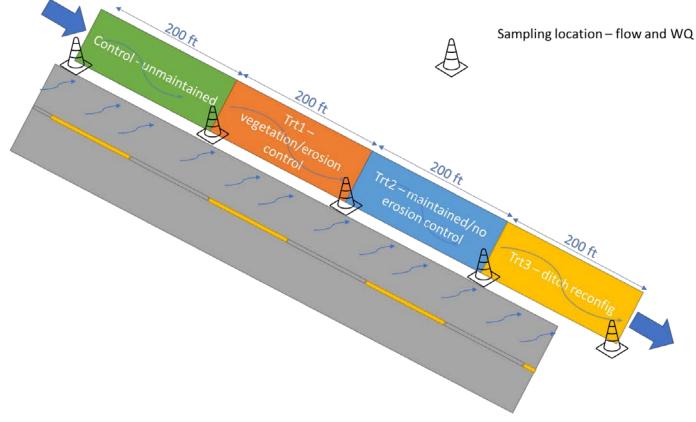


Figure 1: Arrangement of control and three treatment sections for this study.

Composite water quality samples will be analyzed for 10 analytes: dissolved organic carbon, total suspended solids, total phosphorus, total and dissolved copper, total and dissolved zinc, total petroleum hydrocarbons, total nitrogen, and nitrate-nitrite. Continuous flow data will be used to pace the automated samplers, and to assess variation in peak flow and volume reductions across each treatment.

To assess plant health, percent establishment (4-6 weeks post planting) will show how fast the stand will provide complete ground cover. Additionally, stand quality (3 times per year: spring, summer, fall) will be rated in terms of ground cover, plant height, aesthetics, etc. Percent winter survival of a stand will be measured to determine if any component of the mix does not survive the winter. Lastly, percent ground cover (3 times per year: spring, summer, and fall) in terms of weed coverage as a percent of ground cover will be rated at establishment and at each stand quality rating date. Percent of each species that are dominant in a stand at the conclusion of study will also be measured.

ANTICIPATED OUTCOMES

Based on the water quantity/quality and plant establishment work described above, effective maintenance strategies that minimize maintenance effort while maximizing conveyance and pollutant removal in roadside ditches will be identified. Additionally, grass mixes ideally suited for planting in roadside ditches of the Puget Sound region will be identified.

PROJECT TASKS

TASK 1: PROJECT MANAGEMENT (TOTAL COST = \$18,509)

Project administration will be led by Washington State University (WSU) staff. This includes initiating agreements, subcontracting with project partners, tracking progress of deliverables, and reimbursing partner project work based on detailed reports of deliverables. WSU will develop a Technical Advisory Committee (TAC) for this project. The TAC will comprise representatives from Ecology, other state agencies, and at least one permittee stormwater manager or coordinator. The TAC will advise the project team on technical issues and concerns by meeting as needed throughout the project.

Semi-annual reports will include status of the contract tasks and decisions related to the tasks made during the calls, meetings and coordination with the advisory committees and communication with Ecology as appropriate. The four semi-annual reports will include project updates, data quality assurance review, results, and findings to date.

Deliverable 1.1 to 1.5: Five semi-annual reports documenting activity, coordination, and communications with Ecology over the 35-month period of this study.

Cost = \$3,702 each Target dates: End of month of months 6, 12, 18, 24, 30

TASK 2: QAPP DEVELOPMENT (TOTAL COST = \$24,842)

A QAPP will be created before instruments are deployed or measurements are taken. The QAPP will list the ditch treatments to be investigated, the number of sensors that will be deployed, the plant species selection procedure, the type of data, how often data are collected, maintenance protocols for the system, how data will be managed, and lastly how data will be analyzed. Costs associated with QAPP development are related to time taken to write and revise the QAPP document.

For QAPP development, we will use the QAPP template provided by the SAM coordinator and follow the Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies, July 2004 (<u>Ecology</u>

<u>Publication No. 04-03-030</u>). The QAPP will be submitted to Ecology's SAM Coordinator for review and approval *before* the start of any field work.

Deliverable 2.1: Draft QAPPCost = \$12,421Target date: End of Month 2Deliverable 2.2: Final Approved QAPPCost = \$12,421Target date: End of Month 3

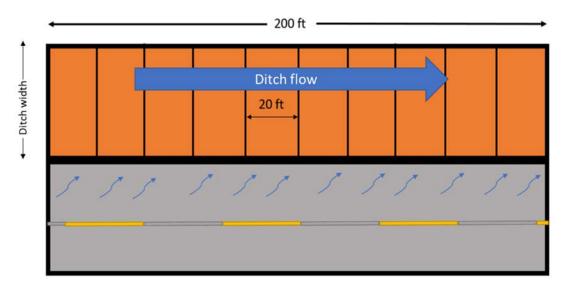
TASK 3: SITE SELECTION & INSTRUMENTATION (TOTAL COST = \$197,667)

Sites will be selected in consultation with the TAC and permittees. We will replicate the study design (see Figure 1) at three locations. Prerequisites for sites will include the following:

- 1. Linear with no culverts and no tributary ditches
- 2. Dry between storm events
- 3. Approximately 200 feet per treatment
- 4. Low gradient (<2-3%)
- 5. Willingness of adjacent property owner to allow installation of sampling equipment

Instrumentation required for each of the 3 sites is presented below.

- 1. 5 flumes
- 2. 5 water level sensors
- 3. 5 ISCO automated samplers (6712 series)
- 4. 2 dataloggers with cellular modems
- 5. 1 rain gauge
- 6. 5 secure enclosures


To reduce costs, the five required samplers and sensors will be interfaced with only two dataloggers. One datalogger will interface with stations 1 and 2 (the most upstream stations) while the second data logger will interface with stations 3-5. A rain gauge will be interfaced with the first of the two dataloggers. The selected equipment was chosen based on cost effectiveness and instrument accuracy and reliability, and is estimated to cost \$141,464.

Deliverable 3.1: A memo with associated photos, to demonstrate the completed instrumentation of all sites. Appendices will include receipts of all equipment purchased. An inventory of all the equipment will be provided with the memo.

Cost = \$197,667 (includes \$141,464 equipment cost) Target date: End of Month 5

TASK 4: - EVALUATING ALTERNATIVE PLANTING PALETTES (TOTAL COST = \$124,354)

Plant palettes will be evaluated to determine efficacy of current WSDOT roadside blends as well as the potential for new blends to be incorporated for use in Western Washington. Test plots will be established as an element of Treatment 1 (see detail below).

Figure 2: Arrangement of 20-feet wide vegetation plots in treatment section 1

Vegetation plots will be 20 ft wide with lengths dependent on the ditch width. Palette evaluation will comprise of 10 vegetation plots at each ditch site. Plots will include many current WSDOT blends used in Western Washington as well as a few designed by WSU. Palettes will be replicated at each site and arranged in a random complete block design. Below are a few options for potential palette compositions. Actual palettes may differ slightly depending on seed availability at the time of planting.

WSDOT Blends:

- 1. 50% Perennial Ryegrass, 40% Creeping Red Fescue, 10% White Clover
- 2. 50% Perennial Ryegrass, 30% Hard Fescue or Sheep Fescue, 20% Sherman Big Bluestem
- 3. 70% Creeping Red Fescue, 15% Meadow Foxtail, 15% White Clover
- 4. 40% Tall Fescue, 30% Perennial Ryegrass, 25% Creeping Red Fescue, 5% Highland Bent
- 5. 80% Tall Fescue, 10% Seaside Bent, 10% Redtop
- 6. 40% Creeping Red Fescue, 40% Perennial Ryegrass, 10% White Clover, 10% Highland Bent

WSU Blends:

- 1. 50% Creeping Red Fescue, 40% Chewings Fescue, 10% Highland Bent
- 2. 50% Hard/Sheep Fescue, 35% Strawberry Clover, 15% Yarrow
- 3. 35% Idaho Fescue, 35% Tufted Hairgrass, 30% Strawberry Clover
- 4. 55% Creeping Red Fescue, 15% Yarrow, 15% Meadow Foxtail, 15% Sweet Vernal Grass
- 5. 50% Redtop, 50% Highland Bent
- 6. 50% Slender Creeping Red Fescue, 40% Chewings Fescue, 10% Redtop

Data Measurements include:

- 1. Establishment percentage (4-6 weeks post seeding)
- 2. 6 stand quality ratings (3 ratings per year: spring, summer, and fall on a 1-9 scale; 1 =dead 9 =ideal)
- 3. Winter survival percentage (at each spring stand quality rating date)
- 4. Percent invasive cover (at establishment and each stand quality rating date)
- 5. Ground cover percentage (3 ratings per year: spring, summer, and fall)
- 6. Species dominant (at conclusion of study)

Successful palettes will have a high percent establishment, quality rating >5, low invasive percentage, high winter survival percentage and species dominant as a component of the seed blend. Planting of sites will occur in Fall 2021, and monitoring will continue through to the end of the project in early 2024.

Deliverable 4.1: Draft report of analysis with a presentation shared at TAC meeting # 4 that outlines the totaleffort associated with the successes and failures of the vegetation plantings.Cost = \$62,177Target date: End of Month 30Deliverable 4.2: Revised analysis and revised report shared with TAC meeting # 5Cost = \$62,177Target date: End of Month 32

TASK 5: QUANTIFYING EFFECTS OF DITCH MAINTENANCE & RETROFIT ON WATER QUALITY AND QUANTITY (TOTAL COST = \$203,674)

Maintenance activity will be quantified by tallying all human plus machine hours over the duration of the study. A metric for maintenance that weights automated and manual time differently will be developed to quantify maintenance effort. Maintenance effort for the three ditch treatments will be compared to controls (no maintenance). Alterations to peak flow rates of inflow and outflow will be used to characterize the effect of the ditch reconfiguration for each of the four sections.

We will test 10 physico-chemical pollutants during every qualifying storm event¹ over two wet seasons. Samples will be collected from both the influent and effluent from each ditch section. We will attempt to sample at least 4 storms a wet season, or 8 over the three-year period of study. Pollutants that will be analyzed for are: dissolved organic carbon, total suspended solids, total phosphorus, total and dissolved copper, total and dissolved zinc, total petroleum hydrocarbons, total nitrogen, and nitrate-nitrite.

Pollutant removal efficiencies of each ditch reshaping treatment will be evaluated by quantifying inlet and outlet contaminant concentrations and mass loading rates at each ditch station.

Deliverable 5.1: Draft analysis and presentation shared at TAC meeting # 2 that outlines the total effortassociated with water quality remediation by ditch treatment a total of 12 ditch sections.Cost = \$101,837Target date: End of Month 26Deliverable 5.2: Revised analysis and revised report shared with TAC meeting # 3Cost = \$101,837Target date: End of Month 28

TASK 6: COMMUNICATION (TOTAL COST = \$22,779)

Deliverable 6.1: Draft report of the whole study that integrates ditch treatment effects on water quantity and quality for the four ditch treatments tested. The draft will also include a data quality review and usability statement.

Cost = \$5,695 Target date: End of Month 32

Deliverable 6.2: Final report with complete appendices and Excel file of all QA/QC'd data collected over the project period

Cost = \$5,695 Target date: End of Month 33

Deliverable 6.3: Two presentations – one for the Stormwater Work Group and another for regional stormwater related conference or workshop.

¹ See TAPE guidelines for qualifying storms criteria

Cost = \$5,695Target date: End of Month 34**Deliverable 6.4:** Draft fact sheet per SAM format for stormwater managers who seek information.Cost = \$5,695Target date: End of Month 35

PROJECT TEAM AND PROJECT MANAGEMENT										
Task	Lead	Support								
1 - Project Management	Jayakaran	Pickering								
2 – QAPP Development	Jayakaran	Pickering, Ahearn								
3 – Site Selection & instrumentation	Ahearn, Gallardo	Jayakaran, Pickering								
4 - Evaluating alternative planting palettes	Neff	Schnore, Golob								
5 – Quantifying effects of maintenance & retrofit	Jayakaran	Ahearn, Pickering,								
6 – Communication	Pickering	Ahearn, Jayakaran								

A doctoral student (Schnore) with the help of a field technician (Golob), both from the Neff lab, will assist with Task 4. A masters student and a hydrologic technician will assist with Task 5. The project will be managed by WSU with support from Herrera Environmental Consultants. The team will meet on a quarterly basis to discuss project status, share preliminary data analyses, and assess and strategize solutions around potential pitfalls.

WASHINGTON STATE UNIVERSITY TEAM

ANI JAYAKARAN, PHD, PE – will serve as the project lead and will be responsible for meeting project deliverables and communications between the project team and SAM. Ani will assist with QAPP development and site selection. He will manage a graduate student, two technicians, and will be responsible for all data analyses. He serves as an Associate Professor with WSU Extension and holds graduate degrees in Civil Engineering (MS), Agricultural & Biological Engineering (PhD), and is a licensed Civil Engineer in the states of Washington and South Carolina.

NIGEL PICKERING, PHD, PE - will be responsible ensuring communications and interfacing with the TAC, instrument purchasing, graduate student support, reporting, and fact sheet writing. He is a Research Associate Professor at the Washington Stormwater Center (WSC) at WSU in Pullman. Nigel is a Water Resources Engineer with more than 30 years of scientific and engineering experience in water resources management. Pickering has a Ph.D. in Agricultural Engineering from Cornell University and a licensed Civil Engineer in Florida

MICHAEL NEFF, PHD – will lead Task 4 and will support presentation and report writing associated with other deliverables. He will manage a Ph.D. student (Jon Schnore M.S.) and a field technician (Charles Golob M.S.). Jon Schnore will be responsible for the bulk of this task with the support of the field technician, when needed. Michael serves as a Professor in the Department of Crop and Soil Sciences at WSU where he also holds the position of Assistant Department Chair. Dr. Neff is also the director of the Molecular Plant Sciences Ph.D. program and the Principal Investigator for WSU's newly built, 5-acre, Grass Breeding and Ecology Farm. Dr. Neff has a Ph.D. in Botany and Plant Physiology from the University of Washington in Seattle, WA.

HERRERA ENVIRONMENTAL INC

DYLAN AHEARN, PHD - will be responsible for site selection, QAPP development, instrumentation of all sites, and data analysis and reporting support. He is an Environmental Scientist with a focus on hydrologic and meteorological data collection, management, and analysis. Dylan is currently an Associate Scientist with

Herrera Environmental Consultants and he has over 15 years of experience in hydrology and stormwater. Dylan specializes in experimental design, statistical analysis, low impact development, telemetry systems, automated sampling, nonparametric statistics, and stormwater BMPs. He holds a doctorate in Hydrology from the University of California, Davis.

CITY OF TACOMA

ANGELA GALLARDO – Angela will provide oversight of the project from a permittee perspective. Angela has over 15 years of experience in analysis, design and project/program management in the public sector focused on stormwater management, application of LID techniques in capital projects, operations & maintenance, and policy. Angela will bring a critical municipality-perspective and administrative expertise to this project.

PROJECT BUDGET AND SCHEDULE

BUDGET TABLE

			WSU		Herrer						
Task	Salaries	aries Benefits Supplies Travel		Indirect	Equip.	Labor	Travel	Total			
1-Mgmt.	\$11,308	\$2,930	\$0	\$0	\$4,271	\$0	\$0	\$0	\$18,509		
2-QAPP	\$7,540	\$1,954	\$0	\$0	\$2,848	\$0	\$12,500	\$0	\$24,842		
3- instrmnt.	\$8,568	\$5,850	\$0	\$0	\$4,325	\$141,462	\$37,192	\$270	\$197,667		
4–Veg. study	\$54,383	\$34,735	\$1,000	\$7,500	\$26,735	\$0	\$0	\$0	\$124,354		
5-Water qty. & qual.	\$54,383	\$34,735	\$75,320	\$0	\$26,735	\$0	\$12,500	\$0	\$203,674		
6-Comm.	\$13,201	\$4,321	\$0	\$0	\$5,257	\$0	\$0	\$0	\$22,779		
Total by Object	\$149,384	\$84,525	\$76,320	\$7,500	\$70,172	\$141,462	\$62,192	\$270	\$591,825		

BUDGET DESCRIPTION

Overall funds requested to support this work is \$591,825

<u>Washington State University (\$387,901)</u>: Support requested for 2 months of Dr. Jayakaran's time, 1.5 months for Dr. Pickering, two graduate students, and a temporary worker. Details of salary & benefits rates are outlined in the budget table above. WSU requires an annual 4% inflation for faculty and technician salary that has been included. Travel funds are requested for Dr. Neff's team to travel from Pullman to Tacoma as outlined in Task 4. Each trip will require a vehicle rented from WSU motor pool, gas, food and four night's stay in a hotel in Tacoma for two people. Funds are requested for the purchase of seeds and other supplies necessary for planting the palettes. For analyses of pollutant inflow and outflow samples, we are requesting funds to cover sample analyses costs. Each storm will comprise 15 composite samples for water quality analyses- 5 samples per site, at 3 sites. Water quality analyses costs are estimated at \$561 per composite

sample. For 8 storm events, the total cost of water quality analyses is \$67,320. Indirect costs are calculated at 30% on salaries and benefits.

<u>Herrera (\$203,924)</u>: Support is requested for \$141,162 in equipment costs to instrument three sites, \$62,192 in labor costs for 374 person hours, and \$270 in travel to and from the sampling sites.

DETAILED SCHEDULE

A timeline for the 6 principal tasks and deliverables is presented below over the 35-month period of this work is shown below. Wet seasons are marked in dark blue.

	2021 Q2	2021	Q3	2021	Q4	202	2 Q1	202	22 Q2	20	22 (23	2022	2 Q4	20	23	Q1	202	3 Q2	202	3 0	23	2023	3 Q4	20	24 (21
1 -Project N	/lgmt.			1				2		-			3					4					5				
2- QAPP	1	2																									
3 -Site Instr	umentati	on	1																								
4 -plants																							1	2			
5- water qt	y. & qual.																		1		2						
6 - Comm.																								1	2	3	4

REFERENCES

Alexander, L.C., 2015. Science at the boundaries: scientific support for the Clean Water Rule. Freshwater Science, 34(4), pp.1588-1594.

- Bannerman, R.T., Owens, D.W., Dodds, R.B. and Hornewer, N.J., 1993. Sources of pollutants in Wisconsin stormwater. Water Science and Technology, 28(3-5), pp.241-259.
- Ecology, 2018. Technical Guidance for Evaluating Emerging Stormwater Treatment Technologies: Technology Assessment Protocol - Ecology (TAPE). Publication No. 18-10-038, Washington State Department of Ecology, Olympia, Washington.
- Herrera, 2011. Control of Toxic Chemicals in Puget Sound: Phase 3: Primary Sources of Selected Toxic
 Chemicals and Quantities Released in the Puget Sound Basin. Prepared for Washington State
 Department of Ecology, by Herrera Environmental Consultants, Inc., Seattle, Washington.
- Maestre, A. and Pitt, R., 2006. "Identification of significant factors affecting stormwater quality using the National Stormwater Quality Database." In: Stormwater and Urban Water Systems Modeling, Monograph 14. (edited by W. James, K.N. Irvine, E.A. McBean, and R.E. Pitt). CHI. Guelph, Ontario, pp. 287 - 326.

Opher, T. and Friedler, E., 2010. Factors affecting highway runoff quality. Urban Water Journal, 7(3), 155–172.

Peter, K. T., Tian, Z., Wu, C., Lin, P., White, S., Du, B., McIntyre, J.K., Scholz, N.L. and Kolodziej, E.P., 2018.
 Using High-Resolution Mass Spectrometry to Identify Organic Contaminants Linked to Urban Stormwater
 Mortality Syndrome in Coho Salmon. Environmental Science and Technology.

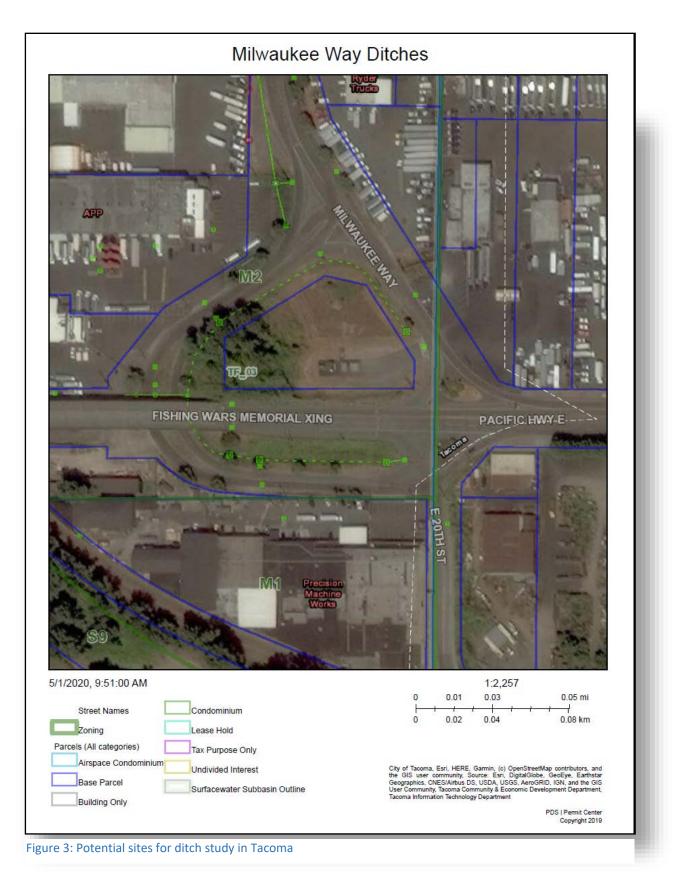


Figure 4: Potential ditch sites in Tacoma

May 5, 2020

Ani Jayarakan, PhD, PE Washington State University Extension Puyallup Research and Extension Center 2606 W Pioneer Ave, Puyallup, WA 98371

Re: "Ditch Maintenance & Retrofits for Improved Stormwater Management" Stormwater Action Monitoring Effectiveness Study Application Support

Dear Ani:

This letter serves as our confirmation and support of your Stormwater Action Monitoring Effectiveness Study initiative entitled "Ditch Maintenance & Retrofits for Improved Stormwater Management." Herrera and WSU have been working together on stormwater science for over 10 years and are excited to continue our partnership on this project.

As retrofit requirements begin to force the region to be more creative with our MS4s, we see our existing roadside ditches as a great opportunity for distributed treatment across our landscape. As a partner, Herrera will participate in the planning and execution of the experimental design and provide support on instrument selection and installation. In addition, Herrera will also play a role in data analysis and reporting, as needed.

Please let me know if you have any questions regarding the collaboration. Thank you for your time and consideration of this proposal. We look forward to working with you.

Very truly yours

Dylan Ahearn Herrera Environmental Consultants, Inc

City of Tacoma Environmental Services Department

05/04/2020

Dr. Anand Jayakaran Washington State University 2606 W Pioneer Ave Puyallup WA 98371

Dear Dr. Jayakaran:

The City of Tacoma endorses the Washington Stormwater Center proposal to the 2020 Stormwater Action Monitoring RFP focusing on *Ditch Maintenance and Retrofits for Improved Stormwater Management*. We value the opportunity to partner with the Washington Stormwater Center to implement this project.

The importance of treating road runoff is critical to reducing pollutants in receiving waters. Our organization sees the potential of reducing the negative impacts of deferred maintenance as well as the negative water quality impacts that can occur when ditch maintenance is performed. We also see the possibility to use ditches as a low cost retrofit alternative to address water quality and quantity issues.

We look forward to the opportunity to partner with the Washington Stormwater Center on this project. The City of Tacoma will provide project support by assisting with site selection and providing the labor, equipment, and materials needed for various types of ditch maintenance, as well as implementing any new findings at the local level.

Sincerely,

Angela Gallardo City of Tacoma Assistant Division Manager Environmental Services Science & Engineering