

Brandi Lubliner, SAM Coordinator; Rich Sheibley, USGS; Curtis DeGasperi, King County; Chad Larson, Ecology; Leska Fore, Puget Sound Partnership

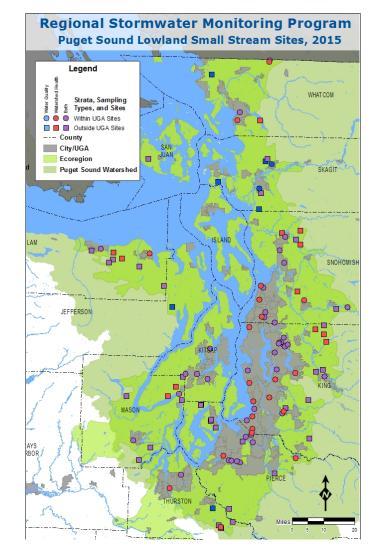
Study questions:

- Q1: What percent of streams meet biological, water, and sediment quality standards for beneficial uses within and outside urban growth areas (UGAs)?
- Q2 & Q3: What natural and human variables correlate with the status of streams within and outside the UGA?
- Q4: How do SAM results compare to other monitoring programs in Puget Sound?
- Q5: What parameters would be carried forward for trend assessment of SAM stream monitoring in the future, and at what timing and frequency?

Sampling design "survey-based"

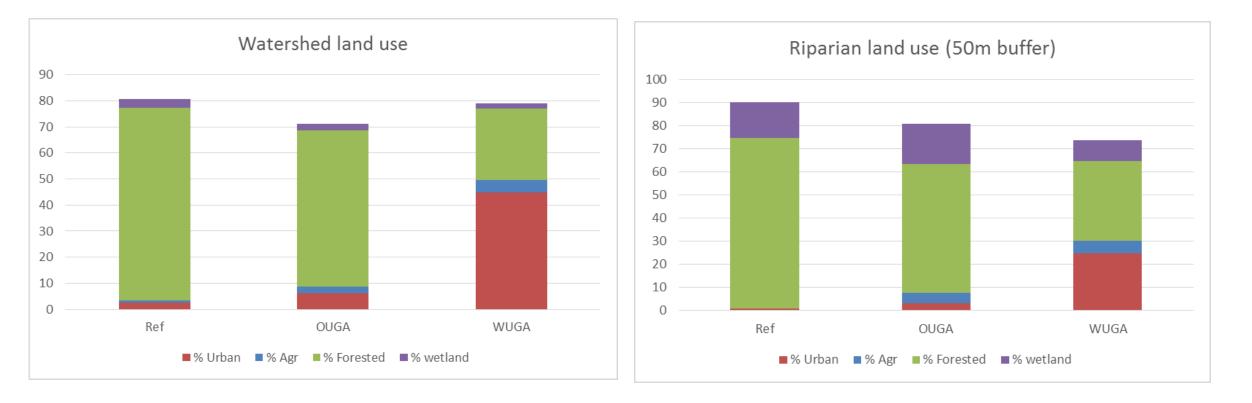
- Analogous to polling methods
- A complete census is not possible
- Survey-based sampling is efficient
- Survey-based sampling provides confidence bounds on results

We avoided this:



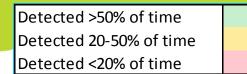
Sampled small Puget Lowland Streams within and outside urban growth areas (UGAs) for:

- Monthly water quality Jan-Dec 2015
 - Conventional parameters, metals, PAHs, stream flow
- Summer Watershed Health Monitoring
 - Water quality (conventional parameters)
 - Benthic macroinvertebrates
 - Periphyton
 - Sediment chemistry (TOC, metals, phthalates, PAHs, PCBs, PBDEs, common pesticides)



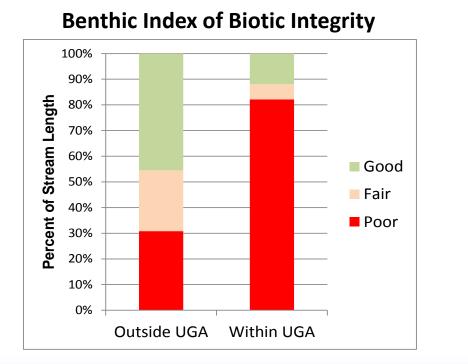
Included watershed and riparian GIS analysis

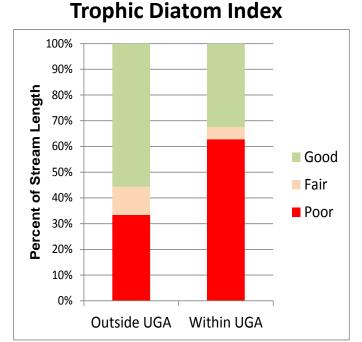
- Leveraged USGS NAWQA expertise (and USGS \$) to derive land cover and other landscape parameters for all SAM PLES sites and 16 leastdisturbed reference sites
- Why? Because local riparian and upstream land cover shown to be important factor for biological communities



Land cover summary within and outside UGAs

 \bigcirc


	Detection	Freqency		Detection	Freqency		Dete
Parameter	Outside UGA	Within UGA	Parameter	Outside UGA	Within UGA	Parameter	Outside
Ammonia	В	В	Naphthalene	С	С	Arsenic	A
Arsenic	А	А	Zinc	С	С	Cadmium	A
Arsenic dissolved	А	А	Zinc dissolved	С	С	Chromium Copper	A
Chloride	А	А	1-Methylnaphthalene	С	С	Dichlobenil	
Chromium	А	А	2-Methylnaphthalene	С	С	Lead	A
Chromium dissolved	В	В	Acenaphthene	С	С	Retene	А
Copper	А	А	Acenaphthylene	С	С	Total PBDE	A
Copper dissolved	А	А	Anthracene	С	С	Total PCB	A
Dissolved Organic Carbon	А	А	Benz(a)anthracene	С	С	Zinc	A
Fecal coliform	А	А	Benzo(a)pyrene	С	С	Bis(2-Ethylhexyl) Phthalate	В
Hardness as CaCO3	А	А	Benzo(b)fluoranthene	С	С	Silver	В
Nitrite-Nitrate	А	А	Benzo(g,h,i)perylene	С	С		
Ortho-phosphate	А	А	Benzo(k)fluoranthene	С	С	Sediment Qua	ality
Total Nitrogen	А	А	Benzofluoranthenes, Total	С	С		-
Total Phosphorus	А	А	Cadmium	С	С		
Total Suspended Solids	А	А	Cadmium dissolved	С	С		
Lead	В	В	Carbazole	С	С		
			Chrysene	С	С		
Water Quality	/		Dibenzo(a,h)anthracene	С	С		
water Quanty	,		Dibenzofuran	С	С		
			Fluoranthene	С	С		
			Fluorene	С	С		
			Indeno(1,2,3-cd)pyrene	С	С		
			Lead dissolved	С	С		
			PCN-002	С	С		
			Phenanthrene	С	С		
			Pyrene	С	С		
			Retene	С	С		
			Silver	С	С		
			Silver dissolved	С	С		
			Total Benzofluoranthenes	С	С		


	Detection	Frequency		Detection Frequency		
	Outside UGA		Parameter	Outside UGA		
	А	А	1-Methylnaphthalene	С	С	
	А	А	2,4-D	С	С	
	А	А	2-Methylnaphthalene	С	С	
	А	А	Acenaphthene	С	С	
	А	А	Acenaphthylene	С	С	
	А	А	Anthracene	С	В	
	А	А	Benz(a)anthracene	С	В	
	А	А	Benzo(a)pyrene	С	В	
	А	А	Benzo(b)fluoranthene	С	В	
	А	А	Benzo(g,h,i)perylene	С	В	
halate	В	А	Benzo(k)fluoranthene	С	В	
	В	А	Benzofluoranthenes, Total	С	А	
			Butyl benzyl phthalate	С	С	
Quality			Carbaryl	С	С	
Qua	iiity		Carbazole	С	С	
			Chlorpyrifos	С	С	
			Chrysene	С	А	
			DCPMU	С	С	
			Dibenzo(a,h)anthracene	С	С	
			Dibenzofuran	С	С	
			Dibutyl phthalate	С	С	
			Diethyl phthalate	С	С	
			Dimethyl phthalate	С	С	
			Di-N-Octyl Phthalate	С	С	
			Diuron	С	С	
			Fluoranthene	С	А	
			Fluorene	С	С	
			Indeno(1,2,3-cd)pyrene	С	В	
			Naphthalene	С	С	
			PCN-002	С	С	
			Phenanthrene	С	В	
			Pyrene	С	А	
			Total Benzofluoranthenes	С	В	
			Total PAH	С	А	
			Triclopyr	С	С	

Q1: Biological Status

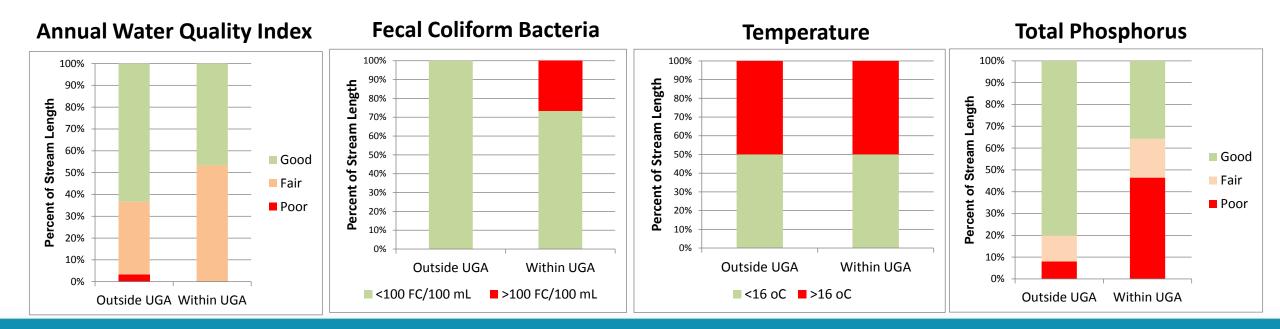
 Biological condition was generally worse in small streams within UGAs compared to streams outside UGAs

Q1: Comparison to water quality standards

- Higher frequency of exceedance of fecal coliform standard at sites within UGAs
- Similar frequency of exceedance of temperature, pH, and dissolved oxygen standards at sites within and outside of UGAs
- Measured metals concentrations did not typically exceed relevant acute or chronic standards for the protection of aquatic life.

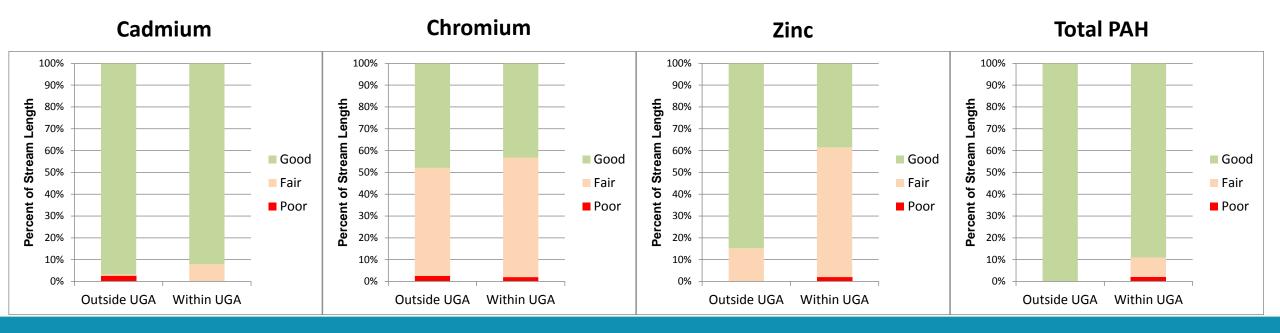
Q1: Comparison to sediment quality standards

 Measured sediment contaminant concentrations did not typically exceed sediment quality standards within or outside UGAs

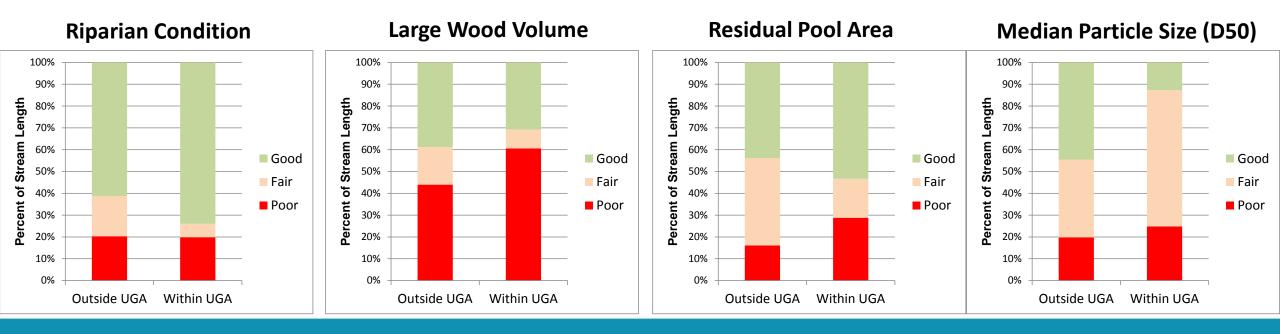


Q1: Water Quality Status

 $\mathcal{\mathcal{D}}$


- Status based on WQI and temperature similar inside and outside UGAs
- Greater proportion of stream length within UGAs in poor condition based on Fecal Coliform bacteria and Total Phosphorus

Q1: Sediment Quality Status

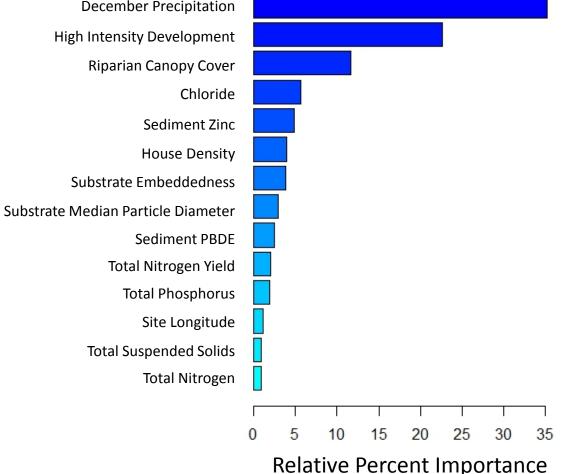

- Highest concentrations measured typically occurred within UGAs
- Zinc concentrations distinctly elevated within UGAs

Q1: Habitat Status

- Habitat in poor condition similar within and outside UGAs except for wood volume and pool area
- Habitat poor + fair condition similar within and outside UGAs except for stream substrate status

Q2/Q3: Natural and human variables that correlate with BIBI scores

Natural variables


Stormwater Action Monitoring

 \mathcal{O}

- Mean December precipitation
- Longitude
- Human variables
 - High Intensity Development
 - Riparian Canopy Cover
 - Chloride in water
 - Zinc in sediment
 - House density

• Etc

Stream embeddedness

Q2/Q3: Natural and human variables that correlate with Trophic Diatom Index

Total Phosphorus Natural variables Large Woody Debris Pieces House Density • Longitude Total Nitrogen Human variables Chloride Site Longitude • Total Phosphorus **Total Nitrogen Yield Rainfall Erosivity** Large Wood Volume Sediment Copper House Density Sediment Zinc Total Nitrogen Canopy Cover Watershed Annual Precipitation • Chloride **Total Suspended Solids** Watershed Total Nitrogen Yield 20 30 50 0 10 40 • Etc

Relative Percent Importance

Work on answering remaining questions in progress

- Q4: How does SAM results compare to other monitoring programs in Puget Sound?
- Q5: What parameters would be carried forward for trend assessment of SAM stream monitoring in the future, and at what timing and frequency?

SAM Puget Lowlands Streams Status & Trends Current Schedule

- Draft report in progress
- Compete draft report for review by August 2017
- Final report completed by December 2017

Questions?

