## Salmon Ocean Ecology: Distribution, Growth, and Survival Trends

Washington Coastal Marine Advisory Council September 20<sup>th</sup>, 2018



#### Brian Burke NOAA Fisheries, NWFSC

Supported by:







# Outline

- Summary of research projects
- Recent ocean conditions
- Salmon distribution and trophic interactions
- Addressing survival (3 examples)

## Understanding complex ecosystems requires Research and Monitoring







# Newport Hydrographic Line

- Sampled biweekly for 20+ years (1996 present)
  - 7 stations
  - 1-25 nm, seasonally out to 200 nm
- CTD, nutrients, chl-*a*, phytoplankton and HABs, zooplankton, ichthyoplankton













## Juvenile Salmon and Ocean Ecosystem Survey (JSOES)



# Pre-recruit survey and ecosystem assessment project

**Objective:** Examine abundance and distribution patterns of age-0 fish including rockfish, hake, and flatfishes in relation to ocean conditions

Sampling: May-June (2011, 2013-2018); night trawls at 30 m depth, plankton, CTD, acoustic, seabird and mammal surveys









# Outline

- Summary of research projects
- Recent ocean conditions
- Salmon distribution and trophic interactions
- Addressing survival (3 examples)

### **Pacific Basin-Scale Dynamics**

#### September 2013

#### September 2014



#### September 2015





#### September 2016



#### https://www.esrl.noaa.gov/psd/map/clim/sst.shtml

### Pacific Basin-Scale Dynamics

#### September 2017

#### September 2018



https://www.esrl.noaa.gov/psd/map/clim/sst.shtml



## **Pyrosome Catch in Trawls**





Scale bar = log (abundance) Number = Geometric mean abundance

Brodeur et al. (MS)

## **Euphausiid Catch in Trawls**





Number = Geometric mean abundance x  $10^{-4}$ 

Brodeur et al. (MS)

## Systemic Biological Response to the Blob



# Outline

- Summary of research projects
- Recent ocean conditions
- Salmon distribution and trophic interactions
- Addressing survival (3 examples)

### Yearling Chinook Stock Composition in June



1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

## Spatial distribution is stock-specific



Teel, et al. 2015. Marine and Coastal Fisheries 7:274-300.

### Subadult and Adult Distributions are Less Clear



Image by DFO Canada



## Potential Prey Resources





Annual mean biomass of larval fish taxa collected during winter (January-March in 1998-2018) along the Newport Hydrographic Line



# Prey abundance and estimated growth have been high



### Predation impacts remain a data gap



## Predation impact depends on alternative prey



Wells et al. 2017

# Outline

- Summary of research projects
- Recent ocean conditions
- Salmon distribution and trophic interactions
- Addressing survival (3 examples)

# **Early Warning:** Stoplight Chart



https://www.nwfsc.noaa.gov/oceanconditions

# **Early Warning:**

## **Extremely Low Salmon Abundance in 2017**



## Chinook at Bonneville Dam

#### **Dynamic Linear Models**

Sibling Regression and the first Principal Component of the stoplight chart



Return data from Columbia Basin Research, DART

# Life Cycle Modeling



# **Best Set of Covariates**\*

### Large-scale winter SST

Recreated using ERSST v5 data



#### Johnstone and Mantua. 2014

https://www.ncdc.noaa.gov/data-access/marineoceandata/extended-reconstructed-sea-surface-temperature-ersst-v5

#### Local summer SST From Buoys



#### http://www.ndbc.noaa.gov/

\* These should be thought of as *indices* of the (unmeasured) ecological processes

- 3 ocean projects to cover the various aspects of ocean ecology
- Anomalous physical conditions can be strong drivers of biological response
- Predator and prey data can be used directly in management tools (e.g., Life Cycle Modeling)

# Thank you!