Paul J. Pickett, P.E. Environmental Assessment Program WA Dept. of Ecology

Water Power License Fee stakeholder meeting

October 23, 2018

Hydropower operations interact with a variety of potential climate change impacts

FERC hydro licensing environmental issues

 Described in Ecology's Water Quality Certifications for Existing Hydropower Dams: Guidance Manual <u>https://fortress.wa.gov/ecy/publications/SummaryPag</u> <u>es/0410022.html</u>

Total Dissolved Gas	Temperature	Turbidity
Nutrients/Trophic Status	Fecal Coliform	рН
Dissolved Oxygen (DO)	Oil and Grease	Toxics
Aquatic Plants & Animals	Fish Habitat – Flow	Wildlife Habitat
Recreation and Aesthetics		

Impacts of more intense storm events on watershed

- Increased watershed erosion
- More high turbidity events
- Increased nutrient loading to reservoir
- Increased wash-off of bacteria, oil, toxics
- Impacts on fishery and recreation
- Debris management challenges
- More sediment deposition
 - Shorter reservoir life from filling with sediment
 - More sediment flushed downstream

Patterns of changes in inflow hydrology

- Wetter wet season, drier dry season
- Greater swings in extremes (peak flows, low flows)
- Loss of snowpack shift in rain/snow mix
 - snow → rain/snow → rain
- Earlier, more rapid snowmelt runoff
 - **TDG events earlier, longer, more intense**
- Changes in storage and downstream flows
- Unprecedented spillway use tests structural integrity
 - e.g. Oroville Dam
 (record spill triggered
 spillway failure)

2005

Patterns of changes in reservoir physical structure

- Warmer inflows
- Warmer surface waters extend deeper
- Earlier hypolimnion setup & longer stratified period
- Loss of fish habitat from the "squeeze"
 - warm surface waters and low DO deep waters
 - More challenging storage management
 - More risk of lower summer reservoir levels
 - Outlet structures may present
 opportunities or
 challenges

Patterns of changes in reservoir ecosystem structure

- More nutrients + longer growing season → Increased eutrophication
 - Increased algal blooms
 - Lower hypolimnetic oxygen
 - Higher epilimnetic pH
 - Shifts in algal species
 - More blue-green algae (cyanbacteria)
 - Other nuisance species

Patterns of changes in reservoir ecosystem structure

- Loss of cool-water and other sensitive species
- Appearance of warm-water adapted species
- Increased non-native and invasive species
- Increased levels of bioaccumulative toxics
 - e.g. methylated mercury

Effects of fires in the reservoir watershed

- Increase in runoff: e.g. 100-year → 1,000 year event
- Increased erosion → more sediment & nutrients
 - **Debris flows and landslides**
- Post-fire vegetation shifts

Patterns in changes in downstream water quality

- Could be warmer
- More nutrients and algae
- More turbidity
- Lower DO, higher pH

Potential ecosystem shifts and climate migration

- **Dams as barriers to climate migration corridors**
 - As climate conditions shift, species need to move
- Vegetation shifts in the watershed due to changed temperature and moisture regimes (and fire)
- Changes in associated wetlands
 - Changes in water-related
 - disease vectors
 - Migration of tropical diseases (e.g. West Nile)
- Altered effectiveness
 of mitigation projects

Potential recreation impacts

- Lower or more variable summer reservoir levels
- Increased algal blooms, including toxic blooms
- Warmer water temperatures
- Shifts in fish populations
- Longer recreation season
 - More conflicting uses
 - More WQ impacts

Carbon emission and sequestration

- **Reservoir** as a carbon sink
 - Detrital carbon settling
 - Associated wetlands
- Reservoir as a carbon source: methane releases

Hydropower projects as low-carbon energy

- Shift in timing of energy production
 - More generation earlier in winter
 - Could be good align winter needs w flow
 - But winters warmer, summers hotter
 - Energy demand shifts to summer
 - **Risk management planning needed**
 - Heat waves and extreme storms
 - Multi-year drought

Adaptation – monitoring

0

 Monitor for critical climate-sensitive parameters

- Temperature profile time series
- Hypolimnetic depth and DO levels
 - Chlorophyll-a & algal species assemblages
 - Cyanobacteria (blue-green) and toxins
- Monitor for changes in watershed loading
 - Suspended sediment and turbidity
 - Nutrient loading
 - Especially extreme weather events
- Frequency & duration of spill events (TDG)
 - 7Q10 may go up with increasing rainfall intensity

Adaptation – modeling a future with climate change

- Altered patterns of hydrology
- Changes in watershed runoff & project inflow quality
- Shifts in reservoir and downstream water quality
- Fish bioenergetics and volitional movement
- Impacts of project operation alternatives
 - Mitigation vulnerability or resilience

"Death of stationarity":

you can no longer predict the future from the past

Adaptation

- Structural changes
 - Outlet configuration
 - Manage downstream DO & temperature
 - Alter reservoir hydraulics to optimize water quality
 - **Operational changes**
 - **Revised operation rules**
 - Optimize for water quality and other uses
 - Long-term risk management planning
 - Plan for an uncertain future

Adaptation

- Watershed management
 - Mitigation to reduce erosion and runoff
- Watershed vegetation management to reduce fire risk
 - Response plans for fires: erosion control, replanting
- Cold water refuges
 - **Downstream impacts**
 - Minimum flows and ramping rates
 - Outlet reaeration
 - Tributary mitigation

Adaptation

0

- Mitigation strategies
 - Plan for resilience under future conditions

- Cold water refuges: tributaries, springs, upwelling
 - **Biota shifts and migration corridors**
 - Vegetation resilience and distribution shifts
 - Mobility for both fish and terrestrial wildlife
 - Build resilience for associated wetlands
- **Downstream impacts**
 - Restore floodplain functions
 - Tributary restoration and enhancement

Adaptation

0

0

- How do we do it?
 - Adaptive management: "Plan-do-check-act" cycle
 - "Monitor-Evaluate-Adjust Plans-Implement"
 - Make adjustments as the situation evolves
 - Create a Project "WQ risk management plan"
 - Apply to reservoir and downstream impacts
 - Apply to mitigation projects
 - Managing projects

 in a changing world
 requires creativity,
 flexibility, and adaptability

Tools for evaluating climate impacts and resilience

- NW climate tool box
 <u>https://climatetoolbox.org/</u>
- UW CIG resources

https://cig.uw.edu/

• UW Columbia River Climate Change hydrology modeling

National Climate Assessment PNW chapter

https://nca2014.globalchange.gov/report/regions/northwest

NorWeST (for tributary conditions)

https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST/Mode ledStreamTemperatureScenarioMaps.shtml

Questions?

