Burnt Bridge Creek Stormwater & Capital Improvements Workgroup Meeting

Welcomes & Introductions

• Name, Title, Department

Meeting Objectives

1. Review priority locations for water quality improvement from Source Assessment (15 minutes)

2. Begin implementation planning (60 minutes)

- Priority areas for implementation.
- Implementation goals, actions, and opportunities.
- Implementation challenges.
- Milestones, targets, and timelines for implementation.
- Criteria to measure progress (performance measures).
- Funding sources and implementation partners.
- 3. Next steps (10 minutes)

Where have we been?

- October 2020: Burnt Bridge Creek Source Assessment published
- February 2021: Burnt Bridge Creek Partnership kicked off
- March 2021: Implementation workgroups assigned
 - Stormwater and capital improvements
 - Operations and maintenance
 - Urban forestry and greenways
 - Sewer connection and septic systems
 - Public education and outreach
 - Other TBD: SEH America, local water use, and monitoring
- April-May 2021: Implementation Workgroups
 - Ecology having internal meeting about SEH America Facility

Where are we going?

- June 2021: Submit completed worksheets to Ecology
- Summer 2021: Full Burnt Bridge Creek Partnership meeting Report out on what we learned at workgroups
- **Summer 2021:** External partnership meeting LCEP, Watershed Alliance, WSDOT, Clark County Clean water Division, Clark County Public Health, Clark Conservation District, LCFRB, etc.
- Fall 2021: Public Webinar
- January 2022: Internal Draft (City of Vancouver, Ecology, and EPA)
- Spring 2022: External Draft Burnt Bridge Creek Water Cleanup Plan
- Summer 2022: Publish Burnt Bridge Creek Water Cleanup Plan

Ecology's Objective

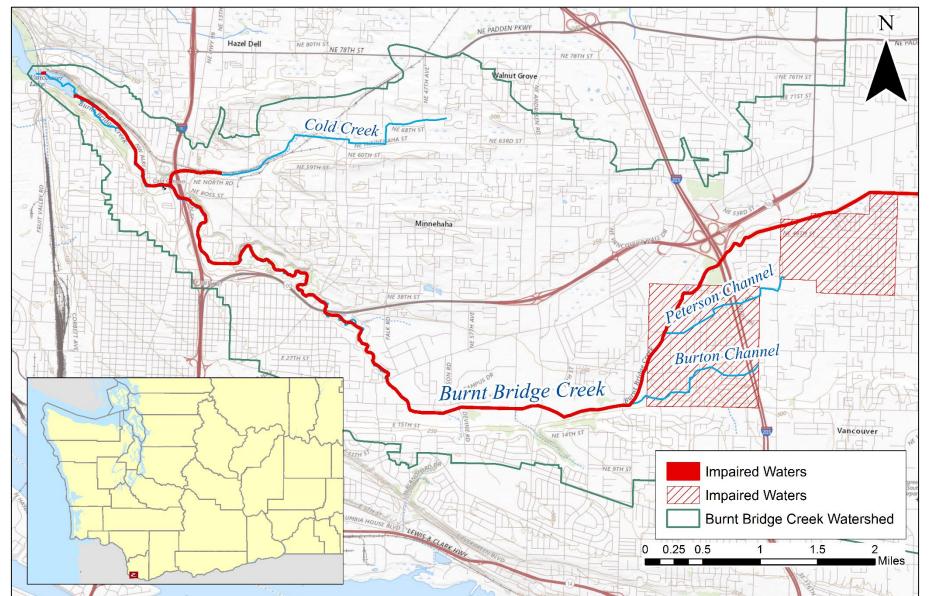
- Lead City of Vancouver through a planning process that results in a Water Cleanup Plan that achieves EPA's requirements.
 - Identify causes of pollution.
 - Estimate pollutant **reductions needed.**
 - Describe **implementation** to achieve pollutant reductions
 - Estimate technical and financial assistance needed
 - Develop information and **education** component
 - Develop implementation schedule.
 - Establish milestones and targets
 - Develop criteria to measure progress
 - Monitor to evaluate effectiveness of implementation efforts.

Water Quality Priorities

Burnt Bridge Creek Source Assessment

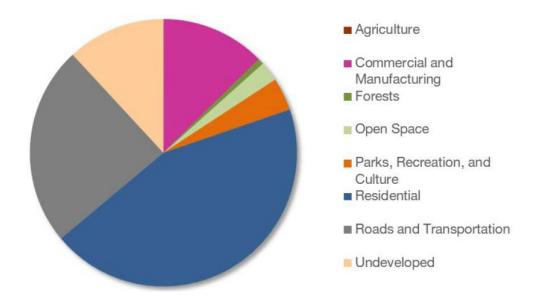
TMDL Study- Source Assessment

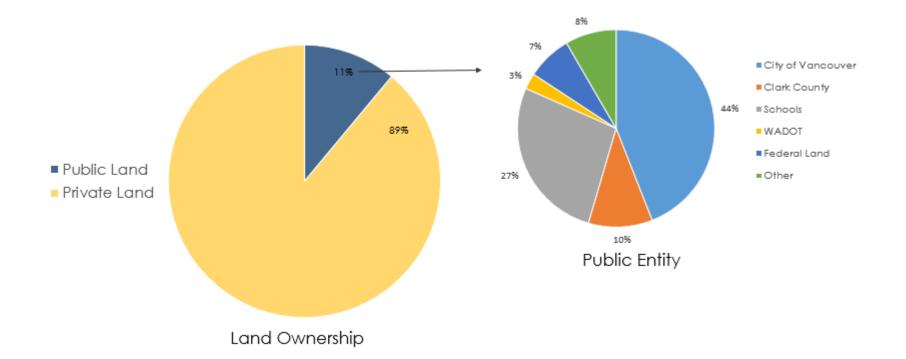
- Identify critical areas
- Identify shade deficits
- Bacteria load reductions needed
- Implementation
 recommendations


Burnt Bridge Creek Watershed Fecal Coliform Bacteria, Temperature, Dissolved Oxygen, and pH

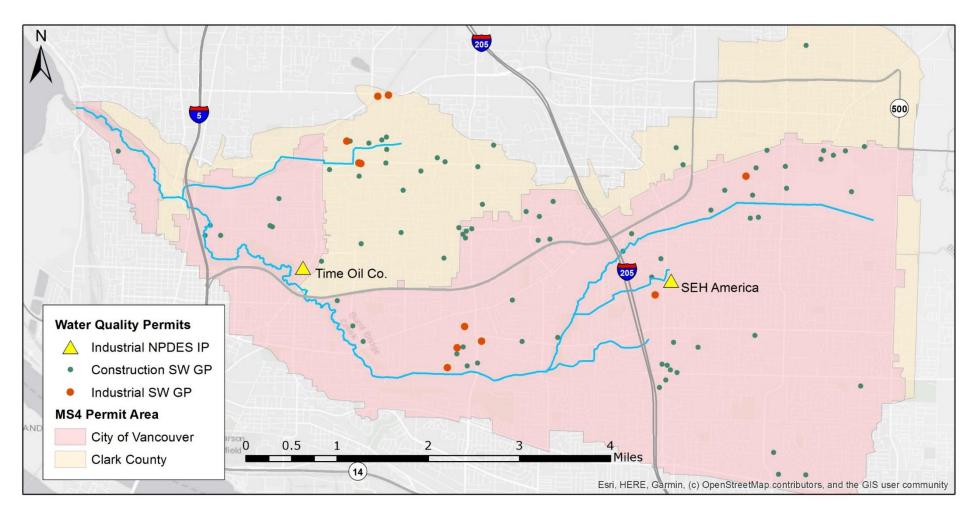
Source Assessment Report

October 2020 Publication 20-03-016


303d list - Bacteria, Temperature, pH, and Dissolved Oxygen



Lower = RM 0 to 5 Middle = RM 5 to 10 Upper = RM 10 to 13



Land Use Category	Land Use (acre)	Land Use (%)
Agriculture	12	0%
Commercial and Manufacturing	2,333	13%
Forests	134	1%
Open Space	445	2%
Parks, Recreation, and Culture	736	4%
Residential	8,174	44%
Roads and Transportation	4,478	24%
Undeveloped	2,201	12%

-					
Land Area (acre)	Land Area (%)				
901	44%				
215	10%				
554	27%				
54	3%				
151	7%				
171	8%				
	(acre) 901 215 554 54 151				

MS4 Area and NPDES Permits

~70% or 13,030 acres is covered by the City of Vancouver MS4 permit

Priority Areas

Stormwater

Lower watershed

- 45% residential
- 29% roads
- 7% commercial, manufacturing, mining
- Vancouver / Clark County MS4 and some WSDOT

Middle watershed

- 45% residential
- 24% roads
- 15% commercial, manufacturing, mining
- Mostly Vancouver MS4, some Clark County & WSDOT

Upper watershed

- 43% residential
- 21% roads
- 11% commercial, manufacturing, mining
- City of Vancouver and Clark County MS4

Table 7. List of permits in Burnt Bridge Creek watershed.

Permit ID	Permit Category	Permit
WAR301324	Construction SW GP	~90
WA0039616	Industrial NPDES IP	SEH America Inc
WA0040967	Industrial NPDES IP	Time Oil Co NE Cherry Dr
WAR005582	Industrial SW GP	Trus Way Inc
WAR305395	Industrial SW GP	Marks Design
CNE304850	Industrial SW GP	City Bark & Recycling LLC
CNE307641	Industrial SW GP	Hy Pro Corporation
CNE307654	Industrial SW GP	Templar Granite LLC
CNE307405	Industrial SW GP	Heuvel Enterprises
CNE126328	Industrial SW GP	Lynnwood Kitchens Inc
WAR001186	Industrial SW GP	Boc Process Gas Solutions
WAR305409	Industrial SW GP	Fabrication Products Inc Minnehaha St
WAR308058	Industrial SW GP	Accra Fab Inc Vancouver
CNE304852	Industrial SW GP	Dewils Industries

Construction, individual, and industrial stormwater permits.

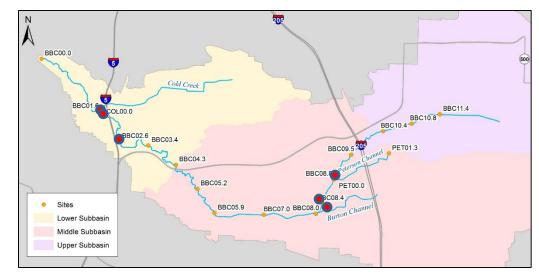
Bacteria Priorities

Summary of Fecal Coliform Bacteria Results (2009-2010) Comparison with Water Quality Criteria

Site	Dry Season Count (n)	Dry Season GeoMean	Dry Season %excd	Wet Season Count (n)	Wet Season GeoMean	Wet Season %excd
BBC11.4	15	63	0%	18	23	11%
BBC10.8	15	63	0%	18	24	11%
BBC10.4	15	130	27%	18	47	22%
BBC09.5	15	75	7%	18	36	22%
BBC08.8	15	76	7%	18	34	11%
PET01.3	14	9	7%	18	6	11%
PET00.0	15	310	87%	18	219	50%
BBC08.4	15	215	47%	18	90	17%
BUR00.0	15	260	40%	18	183	39%
BBC08.0	15	162	40%	18	107	22%
BBC07.0	14	98	21%	18	87	39%
BBC05.9	15	107	13%	18	74	28%
BBC05.2	15	132	20%	18	129	50%
BBC04.3	15	164	27%	18	122	39%
BBC03.4	15	138	20%	18	126	39%
BBC02.6	15	236	60%	18	118	39%
COL00.0	15	484	87%	18	150	44%
BBC01.6	15	215	60%	18	128	44%
BBC00.0	13	19	0%	17	49	24%

<u>Water Quality</u> <u>Standard</u> Geometric Mean < 100 cfu/00 mL

10% not to exceed 200 cfu/100 mL


Priorities

- Peterson
- Burton
- Cold Creek
- RM 1.6
- RM 2.6
- RM 8.4
- Red = Geometric Means over 200 cfu / 100 ml
- Yellow = Geometric Means over 100 cfu / 100 ml

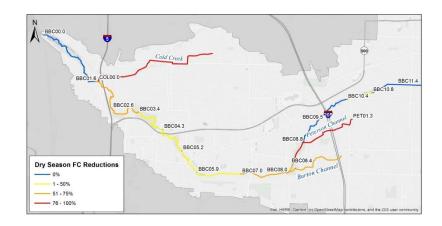
Recommendations?

Focus bacteria reduction efforts to Middle & Lower watershed.

- Priority 1: Geometric means >200cfu/100ml in dry season
 - Peterson Channel
 - Burton Channel
 - Cold Creek
 - BBC 8.4
 - BBC 2.6
 - BBC 1.6

• Load reductions of over 75% are needed at all of these locations to meet water quality standards.

Recommendations?


Focus bacteria reduction efforts to Middle & Lower watershed.

Priority 2: >75% load reductions needed

- Peterson Channel Wet and Dry season
- Burton Channel Wet Season
- Cold Creek Dry Season
- BBC 8.4 Dry season
- BBC 7.0 Wet Season
- BBC 4.3 Wet Season
- BBC 3.4 Wet Season
- BBC 2.6 Wet Season
- BBC 1.6 Wet Season

Red = Also a #1 priority due to geometric means over 200 cfu/100 ml in dry season

Summary of Fecal Coliform Bacteria Results (2009-2010) Comparison with Water Quality Criteria

Site	Dry Season Count (n)	Dry Season GeoMean	Dry Season %excd	Wet Season Count (n)	Wet Season GeoMean	Wet Season %excd
BBC11.4	15	63	0%	18	23	11%
BBC10.8	15	63	0%	18	24	11%
BBC10.4	15	130	27%	18	47	22%
BBC09.5	15	75	7%	18	36	22%
BBC08.8	15	76	7%	18	34	11%
PET01.3	14	9	7%	18	6	11%
PET00.0	15	310	87%	18	219	50%
BBC08.4	15	215	47%	18	90	17%
BUR00.0	15	260	40%	18	183	39%
BBC08.0	15	162	40%	18	107	22%
BBC07.0	14	98	21%	18	87	39%
BBC05.9	15	107	13%	18	74	28%
BBC05.2	15	132	20%	18	129	50%
BBC04.3	15	164	27%	18	122	39%
BBC03.4	15	138	20%	18	126	39%
BBC02.6	15	236	60%	18	118	39%
COL00.0	15	484	87%	18	150	44%
BBC01.6	15	215	60%	18	128	44%
BBC00.0	13	19	0%	17	49	24%

<u>Water Quality</u> <u>Standard</u> Geometric Mean < 100 cfu/00 mL 10% not to exceed

200 cfu/100 mL

- Red = Geometric Means over 200 cfu / 100 ml
- Yellow = Geometric Means over 100 cfu / 100 ml

Recommendations?

- Priority 3: Geometric means over 100
 - BBC10.4
 - BBC 8.0
 - BBC 5.9
 - BBC 5.2
 - BBC 3.4

Red = Also a priority due to >75% load reductions needed in wet season

- Priority Areas (#1 and #2)
 - *Tributaries:* Peterson Channel, Cold Creek, Burton Channel, RM

Middle watershed

- BBC08.4 during the dry season
- BBC07.0 during the wet season
- Lower watershed
 - BBC04.3, BBC03.4, BBC02.6, and BBC01.6 during the wet season.

Dissolved Oxygen Priority Areas

- Sites with most noncompliant days for DO are:
 - Upper watershed (BBC11.4, BBC10.8)
 - Middle watershed (BBC7.0 and BBC05.9)

pH Priority areas

- Most sites were in compliance
- Highest pH and most noncompliant days at BBC00.0
- Sites that met criteria include
 - BBC08.8
 - BBC8.0
 - BBC5.2
 - PET00.0
 - PET01.3

Temperature Priority areas

- All sites exceeded, except for outlet of Cold Creek
- Maximum temperatures at BBC0.00
- Middle subbasin had highest number of days above criteria
 - BBC05.9 and BBC07.0

	Table 4. Te	•									
	BBC10.4	BBC8.8	PET0.0	BBC8.4	BUR0.0	BBC7.0	BBC5.9	BBC5.2	BBC2.6	COL0.0	BBC1.6
Temporal Trend for 2011–2017 ^a											
Temperature	-	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	-	-	-	-	-	Ľ	-	-	-	-	-
рН	-	-	-	-	-	Ŕ	-	-	-	_	-
Conductivity	-	-	7	7	-	7	7	7	7	7	7
Turbidity	7	-	7	-	-	-	-	-	-	-	-
Total Suspended Solids	7	-	¥.	-	-	-	¥.	Ľ	¥.	-	ĸ
Total Phosphorus	-	-	-	-	-	-	-	-	-	-	-
Soluble Reactive Phosphorus	-	-	7	-	-	-	-	-	-	-	-
Total Nitrogen	Ŕ	Ŕ	7	-	-	Ŕ	Ľ	¥.	ĸ	7	-
Nitrate+Nitrite	Ŕ	Ŕ	7	Ŕ	R	-	-	-	-	-	-
Fecal Coliform	-	-	-	-	Ŕ	-	Ŕ	L الا	-	ĸ	-
Percent Change from 2004–2007	to 2011–2017 ^b										
Temperature	na	na	1%	-3%	na	1%	-2%	na	na	na	na
Dissolved Oxygen	na	na	-1%	-10%	na	-15%	42%	na	na	na	na
рН	na	na	1%	0%	na	4%	8%	na	na	na	na
Conductivity	na	na	9%	-4%	na	-5%	-2%	na	na	na	na
Turbidity	na	na	46%	155%	na	127%	98%	na	na	na	na
Total Suspended Solids	na	na	34%	117%	na	73%	90%	na	na	na	na
Total Phosphorus	na	na	110%	104%	na	33%	42%	na	na	na	na
Soluble Reactive Phosphorus	na	na	108%	74%	na	42%	51%	na	na	na	na
Total Nitrogen	na	na	19%	83%	na	141%	123%	na	na	na	na
Nitrate+Nitrite	na	na	29%	81%	na	291%	277%	na	na	na	na
Fecal Coliform	na	na	-48%	-46%	na	39%	-5%	na	na	na	na

^a Temporal trend evaluated using Kendall's Tau correlation test (a = 0.05). Empty cells are not significant.

increasing trend
= decreasing trend

– = no significant trend

significant water quality improvement significant water quality decline significant change in pH or conductivity

^b Percent change in median values from 2004–2007 and 2011–2017. Significant difference between periods tested using Mann-Whitney U test (a = 0.05).

PgG

na = not analyzed

R.

HERRERA

Implementation Planning Review Worksheets

Discussion topics

- Stormwater retrofit opportunities
- Property acquisition opportunities
- Illicit Discharge Detection and Elimination
- Source Control
- Private Stormwater Facilities
- Construction Stormwater and Erosion Control
- ERTS response and enforcement
- Other NPDES
- Anything else we should focus on?

Implementation Planning

- Resources, reports, or websites Ecology should reference for information
 - 1.
 - 2.
 - 3.

Implementation Planning

- Priority areas for implementation
 - Examples
 - Subwatersheds
 - Catchments or Drainage areas
 - Neighborhoods
 - Roads
 - River miles
 - Parcel IDs
 - Outfalls
 - Facilities

Implementation Planning

Implementation challenges

1.
 2.
 3.

Milestones, Targets, and Timelines

Milestones	Target Date
1.	2023
2.	2025
3.	2027
4.	2030
5.	2033

Criteria to measure implementation progress

Performance measures

Criteria to Measure Progress
1.
2.
3.
4.
5.

Funding Sources and Partnerships

Funding Sources	
Implementation	
Partners	

Next Steps

Timeline

- April-May 2021: Implementation Workgroups.
- June 1, 2021: Completed worksheets due to Ecology.
- **Summer 2021:** Full Burnt Bridge Creek Partnership meeting (report out on what we learned at workgroups)
- Summer 2021: External partnership meeting LCEP, Watershed Alliance, WSDOT, Clark County Clean water Division, Clark County Public Health, Clark Conservation District, LCFRB, etc.
- Fall 2021: Public Webinar
- October 2021: FY 2023 Funding Applications due!
- January 2022: Internal Draft (City of Vancouver, Ecology, and EPA)
- Spring 2022: External Draft Burnt Bridge Creek Water Cleanup Plan
- Summer 2022: Publish Burnt Bridge Creek Water Cleanup Plan

www.tinyurl.com/burntbridgecreek

Burnt Bridge Creek Partnership for clean water

Return to Department of Ecology website | Burnt Bridge Creek Source Assessment Report | Report environmental complaints online

ECOLOGY

Burnt Bridge Creek Watershed Fecal Coliform Bacteria, Temperature, Dissolved Oxygen, and pH

Source Assessment Report

theshe 201 Politanae 20-01-04

What is the Burnt Bridge Creek Partnership?

The Burnt Bridge Creek watershed located in Vancouver, Washington, is on Washington State's polluted waters list (303d list) for warm water temperatures, bacteria, dissolved oxygen, and pH pollution problems, which drives the need to develop a Water Cleanup Plan. In October 2020, the <u>Burnt Bridge Creek Source Assessment Report</u> was published to identify ortical areas for water quality improvement. This Source Assessment identifies portions of Burnt Bridge Creek that are not meeting water quality standards. The report also identifies the largest shade deficits in the watershed to focus tree planting efforts, and determines the bacteria reductions needed to meet water quality standards.

To implement recommendations from the Source Assessment, the <u>Burnt</u> <u>Bridge Creek Partnership</u> was formed in February 2021 to develop and implement the Water Cleanup Plan. This Water Cleanup Plan will focus on best management practices and implementation actions to improve water quality. The Partnership will meet regularly through 2022.

Questions about the Burnt Bridge Creek Partnership should be directed to <u>Devan Rostorfer</u>, Water Quality Specialist, Washington State Department of Ecology.

Past Events & Meeting Materials

- February 2, 2021 Burnt Bridge Creek Partnership kickoff meeting
 - Agenda February 2021
 - Presentation Overview of process
 - Presentation Burnt Bridge Creek Source Assessment
 - Burnt Bridge Creek Source Assessment Report
 - Meeting Summary February 2021

Local Resources

- City of Vancouver Stormwater, Surface Water, and Groundwater Utility.
- City of Vancouver Urban Forestry
- <u>City of Vancouver Water Resources Education Center</u>
- City of Vancouver Sewer System & Wastewater Treatment Facilities
- Stormwater Partners of Southwest Washington
- Burnt Bridge Creek Trail
- Explore Your Watershed
- Project Restore

FY 2023 Call for Projects

Grant Funding Opportunities

- One of our regional goals is to help local jurisdictions develop competitive applications for Ecology Water Quality grants.
- To encourage communication earlier in the process and provide more time for project proposal development, Ecology is asking interested applicants to complete a short "Notice of Intent" form by June 15, 2021.
- Ecology will still host statewide application workshops in August and the final applications are due October 12, 2021.
- For more details please visit <u>https://tinyurl.com/ECY-SWRO-Grants</u>, or contact Leanne Whitesell, Regional Fund Coordinator, *Nonpoint Activity Projects*, (360) 407-6295 or <u>Leaw461@ecy.wa.gov</u>.

APPENDIX: Recommendations from Source Assessment

- Continue stormwater management through the implementation of appropriate best management practices (BMPs).
- Achieve a high level of stormwater management in the Burnt Bridge Creek watershed by implementing structural retrofits and non-structural stormwater BMPs to manage runoff from impervious surfaces. Prioritize implementation of BMPs on effective impervious surfaces, directly discharging to Burnt Bridge Creek from pollutant generating land use types, businesses, and activities. Focus implementation of stormwater BMPs on residential and transportation land uses, which make up a significant portion of land use in the watershed.
- Prioritize the implementation of illicit discharge detection and elimination (IDDE) programming in areas with dry season bacteria exceedances. Initial IDDE efforts should target Burnt Bridge Creek tributaries.

- Conduct investigative stream walks along Burnt Bridge Creek and its tributaries to identify and sample unknown or unmapped outfalls. These stream walks should be prioritized at tributaries and areas with water quality criteria exceedances to investigate potential sources of bacteria.
- Focus stormwater source control program implementation in areas with bacteria generating land uses and businesses. This includes implementation of bacteria source control BMPs for pet and goose waste in parks and recreation areas, and nutrient source control BMPs at golf courses in the watershed.
- Prioritize construction stormwater inspections to areas with pH exceedances.
- Establish a partnership between the City of Vancouver, Clark County, and the Washington Department of Transportation to work collaboratively across jurisdictions to maximize stormwater outcomes in Burnt Bridge Creek